
Give a JIT on GPUs: NVRTC for Code-Generating
Database Systems

Anton Sachnov
University of Bamberg

anton.sachnov@uni-bamberg.de

Leonard von Merzljak
TUM

leonard.von-merzljak@tum.de

Maximilian E. Schüle
University of Bamberg

maximilian.schuele@uni-bamberg.de

Abstract—Code generation for GPU database systems creates
fast runtime code but suffers from expensive compilation and
requires all modules to be compiled before execution. This paper
investigates how the NVIDIA runtime compiler (NVRTC) accel-
erates compilation for code-generating GPU database systems.
Using NVRTC, we demonstrate just-in-time (JIT) compilation
for a tuple-at-a-time (push-based) query execution model. For an
exemplary analytical query, NVRTC accelerates the compilation
time by a a factor of eight compared to NVIDIA’s CUDA compiler
(nvcc). This will allow the development of code-generating GPU
database systems for adaptive query execution.

I. INTRODUCTION

Interpretation of query plans—the traditional Volcano-based
execution model [1]—suffers from one function call per op-
erator and tuple. The push-based execution model [2], which
inverses the data flow, together with code generation eliminates
any interpreted function call at execution time but requires one
function call per operator at compile time. As the generation
of C++ code is time-consuming, HyPer [3], [4] is the first
code-generating database system that uses low-level virtual
machine (LLVM) [5] assembly for faster compilation times.
This allows for a just-in-time (JIT) [6], [7] compilation of
user-defined SQL queries.

HyPer supports concurrent execution on multiple CPUs
through morsel-driven parallelism but lacks support for data-
level parallelism. The single instruction, multiple threads
(SIMT) execution model, on which graphics processing units
(GPUs) rely, provides data-level parallelism. Therefore, GPU
database systems [8], [9] have been developed that provide
a high throughput by performing the same instruction on
multiple tuples in parallel [10], [11]. Their development re-
lies on general-purpose computing on GPUs (GPGPU) based
upon platforms such as NVIDIA’s Compute Unified Device
Architecture (CUDA).

NVIDIA’s CUDA architecture expects instructions for its
parallel thread execution (PTX) virtual machine as input. The
graphics driver then translates the PTX instructions (in ASCII
representation) into binary code to run on the GPU. When
porting code generation to the GPU, one can use NVIDIA’s
compiler nvcc to generate CUDA C/C++ code with compa-
rable compilation times as GNU gcc or let LLVM address the
GPU. LLVM uses an intermediate representation (IR) that is
mapped to the device-specific assembly. When addressing the
GPU, LLVM maps the IR to the PTX instruction set. This
constitutes another indirection to a virtual machine, which

SQL .sql

Query Plan

Query Compiler

CUDA C/C++ .cu LLVM IR .bc

PTX llcnvcc

NVRTC

GPU
GPU driver

Fig. 1. Code-generation for GPU: The system creates a query plan based
on SQL as input. The query compiler generates the code—either as CUDA
C/C++ or as LLVM IR—to be executed on the GPU, which is then compiled
to PTX using the nvcc or the llc compiler. Instead, NVRTC allows the
query compiler to generate and execute the PTX code directly.

could be addressed directly. To avoid any indirection for JIT
compilation on CPUs, asmjit1 directly creates assembly code
for x86, x86 64, and AArch64 architectures. For GPUs, the
NVIDIA runtime compiler (NVRTC), introduced with CUDA
version 7.0 in 2014 [12], generates PTX code from a C++
string at runtime (cf. Figure 1).

We argue that NVRTC is well suited for code-generating
GPU database systems [13]–[16] with faster compilation times
than nvcc. To demonstrate query-compilation to GPU, we
implement an analytical query based on a tuple-at-a-time push-
based query execution model and measure its compilation and
execution time.

Tuple-at-a-time execution models without code generation
are unsuited for GPU database systems as each interpreted call
would trigger memory transfer to the GPU and the call of a
GPU kernel. Therefore, operator-at-a-time execution models,
that first transfer the data block-wise and then execute a
relational operator, amortise the overhead for launching a
GPU kernel. However, HetExchange [17] proved that code-
generation enables tuple-at-a-time query execution for GPU
database systems and introduced a pack operators for data
exchange to/from GPU. In this paper, we demonstrate code
generation for GPUs based on a push-based tuple-at-a-time
execution model and compare the compilation time with nvcc
to NVRTC.

The paper is structured as follows: Section II explains
the background on NVRTC for its embedding within code-

1https://asmjit.com/

https://asmjit.com/


generating GPU database systems based on HetExchange. Sec-
tion III presents the interaction of NVRTC with a tuple-at-a-
time (push-based) execution model suited for code-generation
to GPU. Section IV compares the compilation time for code-
generation with NVRTC to the one with nvcc and presents
the execution and compilation times of a selected query on
the GPU. Section V concludes this paper with an outlook on
future database architectures based on NVRTC.

II. BACKGROUND: NVRTC AND HETEXCHANGE

NVRTC generates CUDA C/C++ code at runtime2. Without
NVRTC, users had to compile their CUDA C/C++ before
execution, which required to spawn an additional process.
To avoid an additional process, NVRTC compiles PTX code
from a character string at runtime and returns a handle to
the generated code. This dynamic compilation facility allows
for optimizations and performance improvements that are not
achievable through static compilation offline. The nvJitLink
library or the cuLinkAddData function from the CUDA Driver
API then loads and links the generated code with other
modules.

HetExchange [17] is a query parallelization technique that
extends the Volcano exchange operator. Like the original ex-
change operator, HetExchange relies on asynchronous queues
to parallelise sequential operators. Thereby, HetExchange
provides vertical, horizontal, and bushy parallelism. HetEx-
change’s addition to the exchange operator is the ability to
parallelise query plans across CPUs and GPUs. As a result, it
is capable of parallelising a single query plan across multiple
CPUs, multiple GPUs, or even both CPUs and GPUs in a
co-processing fashion.

Fig. 2. Simplified visualisation of the lifetime of a query in HetExchange.

To illustrate the workings of HetExchange, we want to
discuss parallelisation of a simple query across two cores
of a CPU and one GPU. Figure 2 shows a simple query
plan consisting of three operators: a table-scan, followed by a
filter, and a subsequent aggregation. To parallelise processing,
HetExchange incrementally adds operators to this query plan
which encapsulate the required control and data flow.

2https://docs.nvidia.com/cuda/nvrtc/index.html

1 create table products(p_id int primary key, category int,
price int);

2 create table sellers(s_id int primary key, region int);
3 create table sales(product_id int, seller_id int);
4

5 select category, sum(price)
6 from sales, sellers, products
7 where product_id = p_id and seller_id=s_id and region=0
8 group by category

Listing 1. Exemplary query supported by our NVRTC prototype.

The router operator added by HetExchange is responsible
for controlling the degree of parallelism. Conceptually, it
fulfils the same tasks as the exchange operator in the Volcano
system. The router operator instantiates one pipeline of filter
and aggregation operators to run on the GPU and another two
pipelines of filter and aggregation operators to run on two
separate CPU cores. In general, the router operator would
instantiate one CPU-pipeline for each CPU hardware thread
and one GPU pipeline for each GPU. For GPU-pipelines,
HetExchange additionally adds cpu2gpu and gpu2cpu oper-
ators, which are responsible for starting a kernel running the
pipeline on the GPU and then wait for the kernel to terminate
and thereby transfer control back to the CPU. Since the CPU
and the GPU have separate memory spaces, HetExchange also
has to encapsulate the data flow to make sure that, e.g., a
pipeline running in a kernel on the GPU can access its input
data even though it originally only resided in CPU-RAM.
For this purpose, HetExchange adds a mem-move operator
that transfers memory from the CPU to the GPU or vice
versa. HetExchange must try to minimise their costs, which is
achieved by batching tuples and transferring them as a block.

The router operator then sends those chunks to either the
GPU pipeline or to one of the CPU pipelines. The mem-
move operator transfers chunks of data from CPU-RAM to
GPU-RAM to make them accessible by the GPU. Also, the
mem-move operator transfers the intermediate result of the
aggregation from the GPU back to the CPU so that the CPU
can combine all intermediate results into a final result. Finally,
HetExchange adds an unpack operator. Since HetExchange
uses the push model but transfers data in chunks, the unpack
operator is needed to start an iteration over a chunk.

HetExchange’s system architecture is integrated to Pro-
teus, an LLVM-based code-generating and analytical database
system. Using its LLVM backend to generate PTX code,
HetExchanges addresses NVIDIA GPUs. Instead of LLVM,
we are generating PTX code directly using nvcc and NVRTC.

III. CONCEPTION

The push-based query execution model follows the con-
ception of HetExchange. Based on HetExchange, we create
a code-generation framework using NVRTC. This section de-
scribes the current prototype, which is capable of running the
query depicted in Listing 1. Figure 3 visualises the correspond-
ing query plan on a star schema with one fact table (sales) and
two dimension tables. Listing 2 presents the generated GPU
kernel with colour-coding to map the corresponding relational

https://docs.nvidia.com/cuda/nvrtc/index.html


sellers : {[s id, region]} sales : {[product id, seller id]}

index− ./seller.sid=sales.sellerid

σregion=0 products : {[p id, category, price]}

index− ./products.p id=sales.product id

γcategory,sum(price)

Fig. 3. Query plan to Listing 1 composed of an aggregation (red), an index-
join (blue) and once combined with a selection (green).

operators to the generated code lines. Beyond table scan, the
prototype supports selection, projection, aggregation and index
join.

A. Table Scan and Selection

Having transferred the data to the device memory, we can
start our pipeline on the GPU. For the table scan on the GPU—
instead of a for-loop to process a morsel on the CPU—each
GPU thread processes one tuple. The tuple is determined by
the thread identifier (line 5), whose number should be less
than the chunk size n (line 6). Since we use the push model,
we implement selections as a tuple-at-a-time if-expression,
resulting in a single statement (line 7).

B. Index-Join

Because we store dimension tables as an array sorted on the
primary key and require the primary key to be an ascending
number starting from zero with no gaps, we can implement
joins as a simple, fast array lookup, where the foreign key
in the fact table denotes the offset of the join tuple in the
dimension relation. Referring to our example, the first join of
sales with sellers is condensed into an index look-up for the
aggregation (line 7), the second join with products results in
an index look-up in line 8.

C. Aggregation

For aggregations (i.e., summation), we use a lock-free
hash-table based upon open addressing and linear probing3.
We use atomic operations to update the aggregated values.
Implementing a sum over an array is more complicated on
the GPU because if we use one CUDA thread to process
one element, we have to use expensive atomic operations
for each element to update the global sum. We can decrease
the number of atomic operations by a factor of 32 with
the help of warp-aggregated atomics4. Fortunately, due to
compiler improvements, the NVIDIA compiler can automat-
ically transform code to use warp-aggregated atomics. We
experimentally verified that explicitly using warp-aggregated

3https://nosferalatu.com/SimpleGPUHashTable.html
4https://developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-

aggregated-atomics/

atomics, therefore, does not bring performance improvements
over using atomic operations for each element.

Despite automatically using warp-aggregated atomics, the
kernel is still very slow. To increase throughput, we have to
significantly reduce the number of atomic operations. We can
achieve this by adjusting the execution configuration: instead
of starting one CUDA thread for each element, we start many
fewer threads but let each thread process more elements. A
thread computes the sum in thread-local memory and only
atomically updates the global sum after it finished processing
all elements assigned to it. This allows us to arbitrarily reduce
the number of atomic operations.

1 extern "C" __global__ void kernel(
2 Sale *begin, unsigned int n, Product *d_products,
3 Seller *d_sellers, int capacity,
4 HTEntry *device_entries, unsigned int unused_key) {
5 auto i = blockIdx.x * blockDim.x + threadIdx.x;
6 if (i < n) {

7 if (d_sellers[begin[i].seller_id].seller_region==0u){

8 auto &product = d_products[begin[i].product_id];

9 int key = product.product_category;
10 int value = product.product_price;
11 int slot = get_hash(key) & (capacity - 1);
12 while (true) {
13 int old = atomicCAS(&device_entries[slot].key,

unused_key, key);
14 if (old == unused_key old == key) {
15 atomicAdd(&device_entries[slot].value, value);
16 break;
17 }
18 slot = (slot + 1) & (capacity - 1);

19 }}}}

Listing 2. Generated GPU kernel using index-join (blue), once combined
with a selection (green) and the hash-table for aggregation (red).

IV. EVALUATION

The goal of this subsection is to evaluate the performance
of a complex query (Listing 1) parallelised across our CPU
and our GPU. The star schema consists of three relations. The
sales relation is 3 GB in size and is the fact table. The products
and sellers relations are the dimension tables and we will
vary their sizes between 3 MB and 20 MB each to illustrate
caching behaviour. The query computes the sales revenue per
product category in a specific seller’s region. First, we join the
sales and sellers relation, then we filter by the seller’s region,
join with the products relation, and finally, group by product
category to aggregate all product prices.

System: Intel(R) Xeon(R) W-2295 CPU (18 cores @
3.00GHz, hyper-threading), 128 GB DDR4 RAM, NVIDIA
RTX A2000 12 GB.

Software: Ubuntu 24.04, gcc v13.2.0, nvcc v12.0.140.

A. Compilation Time

Table I shows the compilation time for the query once
compiled with nvcc and once with NVRTC for five runs. As
we can see, compiling the query with the runtime compiler
is eight times faster. Thus, beyond the overhead of spawning
another thread for compilation and the possibility of dynamic
compilation, the runtime compiler decreases the compile time.

https://nosferalatu.com/SimpleGPUHashTable.html
https://developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/


TABLE I
COMPILATION TIME WITH NVCC AND NVRTC FOR QUERY IN LISTING 2.

min [ms] max [ms]
NVRTC 98 103

nvcc 796 823

0 0.5 0.75 1
0

20

40

60

GPU ratio

T
hr

ou
gh

pu
t

G
B

/s

(a) 3 MB
100% caching
80% caching
50% caching
no caching

0.75 1

20

40

60

GPU ratio

(b) 20 MB

Fig. 4. Throughput for query in Listing 2 depending on the amount of data
processed on GPU.

B. Runtime

Figure 4 visualises the throughput of the query from List-
ing 1 depending on the amount of data processed on the GPU
(GPU ratio). The implementation follows work-stealing based
on morsel-driven parallelism, so the GPU ratio can be steered
by the number of available CPU threads and GPU streams.5

1) CPU-only: We start by investigating the performance on
the CPU. When the dimension relations are each 20 MB in
size, they exceed the size of our L3 cache. Therefore, almost
every time we join a tuple from the sales relation with a
tuple from the dimension relations, we get a cache miss. As
a consequence, our CPU can only process 6.2 GB/s. When
we reduce the size of the dimension relations to 3 MB each,
substantial parts of them fit into the L3 cache on our CPU,
which has 24.75 MB. Accordingly, the performance increases
to 8.0 GB/s. This proves that caching plays a very significant
role for the performance on the CPU.

2) GPU-only: Next, we investigate the performance on the
GPU. Again, we start with dimension relations having a size
of 20 MB each. When all data is replicated on the GPU, we
observe a throughput of 22.9 GB/s which is almost 5x higher
than on the CPU. When the sales relation is not replicated on
the GPU (no caching), we observe a performance of 5.5 GB/s.
When we reduce the size of the dimension relations to 3 MB
each, the throughput increases to 65.2 GB/s (cached) and
5.5 GB/s, respectively (not cached). This shows that good
spatial locality of reference improves performance on the
GPU, albeit not as much as on the CPU. Still, having good
performance even when the workload exhibits a bad locality
of reference is a valuable benefit of GPUs compared to CPUs.

3) CPU/GPU: Finally, we examine the performance when
parallelising across our CPU and our GPU. When no data
of the sales relation is cached within the GPU memory, we

5gitlab.rz.uni-bamberg.de/dt/gpudb-merzljak

observe a throughput of 13.0 GB/s. With caching, we achieve
a throughput of 29.1 GB/s with 80 % processed on the GPU.
This is easily explained as the sum of the throughput on the
CPU (6.2 GB/s) and the throughput on the GPU (22.9 GB/s).

If we reduce the size of the dimension relations to 3 MB
each, we can process 13.0 GB/s when no data of the sales
relation is cached on the GPU. This already outperforms
both the CPU-only (8.0 GB/s) and GPU-only (5.5 GB/s)
versions. Caching data on the GPU increases the throughput.
For instance, if 20 % of the data is cached, bandwidth increases
to 15.7 GB/s. If we cache 100 % of the data, we get a
performance of 65.2 GB/s.

V. CONCLUSION

This paper elaborated on the suitability of NVRTC for
code-generating database system. We discussed the embedding
of NVRTC within code-generation and its interaction with
a tuple-at-a-time execution model. The evaluation showed
that the compilation time for code-generation to GPU is
accelerated by a factor of eight using NVRTC. Further, our
hybrid approach based on work-stealing for morsel-driven
parallelism scheduled the workload dynamically to CPU and
GPU to achieve the highest possible throughput.

To summarise, NVRTC can be used for faster code-
generation for GPU database systems in the future. Further,
we argue that NVRTC will allow for dynamic compilation and
loading during runtime after compilation. This can be used to
compile code for GPU database systems at runtime as needed
for adaptive query execution.

REFERENCES

[1] G. Graefe, “Volcano - an extensible and parallel query evaluation
system,” IEEE TKDE, 1994.

[2] T. Neumann, “Efficiently compiling efficient query plans for modern
hardware,” VLDB, 2011.

[3] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots,” in ICDE, 2011.

[4] M. E. Schüle et al., “Monopedia: Staying single is good enough - the
hyper way for web scale applications,” VLDB, 2017.

[5] V. S. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke, “LLVA:
A low-level virtual instruction set architecture,” in MICRO, 2003.

[6] M. A. Jibril et al., “JIT happens: Transactional graph processing in
persistent memory meets just-in-time compilation,” in EDBT, 2021.

[7] M. E. Schüle et al., “Freedom for the sql-lambda: Just-in-time-compiling
user-injected functions in postgresql,” in SSDBM. ACM, 2020.

[8] H. Rauhe, J. Dees, K. Sattler, and F. Faerber, “Multi-level parallel query
execution framework for CPU and GPU,” in ADBIS, 2013.

[9] J. Fett, A. Ungethüm, D. Habich, and W. Lehner, “The case for simdified
analytical query processing on gpus,” in DaMoN. ACM, 2021.

[10] E. A. Sitaridi and K. A. Ross, “Gpu-accelerated string matching for
database applications,” VLDB J., 2016.

[11] ——, “Optimizing select conditions on gpus,” in DaMoN. ACM, 2013.
[12] NVRTC - CUDA Runtime Compilation, 7th ed., NVIDIA, 5 Dec. 2014,

https://www.wrfranklin.org/wiki/ParallelComputingSpring2015/cuda/
nvidia/doc/pdf/NVRTC User Guide.pdf.

[13] S. Breß et al., “Generating custom code for efficient query execution on
heterogeneous processors,” VLDB J., 2018.

[14] J. Paul, B. He, S. Lu, and C. T. Lau, “Improving execution efficiency of
just-in-time compilation based query processing on gpus,” VLDB, 2020.

[15] M. E. Schüle et al., “In-database machine learning with SQL on gpus,”
in SSDBM. ACM, 2021.

[16] ——, “Recursive SQL and gpu-support for in-database machine learn-
ing,” Distributed Parallel Databases, 2022.

[17] P. Chrysogelos et al., “Hetexchange: Encapsulating heterogeneous CPU-
GPU parallelism in JIT compiled engines,” VLDB, 2019.

gitlab.rz.uni-bamberg.de/dt/gpudb-merzljak
https://www.wrfranklin.org/wiki/ParallelComputingSpring2015/cuda/nvidia/doc/pdf/NVRTC_User_Guide.pdf
https://www.wrfranklin.org/wiki/ParallelComputingSpring2015/cuda/nvidia/doc/pdf/NVRTC_User_Guide.pdf

	Introduction
	Background: NVRTC and HetExchange
	Conception
	Table Scan and Selection
	Index-Join
	Aggregation

	Evaluation
	Compilation Time
	Runtime
	CPU-only
	GPU-only
	CPU/GPU


	Conclusion
	References

