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Abstract—Compute Express Link (CXL) is a new interconnect
for attaching byte-addressable memory on PCI-connected devices
to a CPU. The interconnect allows a database system to place
data on local memory, CXL device memory, and persistent disk
storage. While three-tier buffer managers integrating persistent
memory (PMem) exist, CXL device memory has not been
integrated into a multi-tier buffer manager architecture. Exist-
ing three-tier buffer managers integrating PMem use pointer
swizzling to address buffered pages, which is an invasive and
hard-to-implement technique. This work presents a three-tier
buffer manager that integrates CXL device memory. The design
combines hardware-supported virtual memory for efficient page
translation and a probabilistic page migration policy to determine
on which tier pages are located. We demonstrate that these
approaches combined allow a simple integration of CXL device
memory into a database system. We evaluate the buffer manager
with different configurations and workloads based on the YCSB
benchmark on a CXL Type 3 device prototype. Our evaluation
demonstrates that expanding a server’s memory with CXL device
memory can be used to keep more data in memory and to reduce
spilling data to slow disk storage.

Index Terms—CXL, buffer manager, page management,
database system, virtual memory, probabilistic page migration

I. INTRODUCTION

Compute Express Link (CXL) is a new interconnect based
on the physical layer of PCle. CXL can connect a peripheral
device with a CPU, allowing cache-coherent access to the
device memory [1]. Accessing memory over CXL exhibits
different memory characteristics, such as higher latency than
local memory connected via Double Data Rate (DDR) [1], [2].

Traditional disk-based database management systems
(DBMSs) use secondary disk storage as primary data location.
For query processing, a buffer manager loads data into local
memory. With additional CXL device memory, data can be
located on three tiers: on byte-addressable local and device
memory and on persistent disk storage. While three-tier buffer
managers exist for DRAM, persistent memory (PMem), and
solid-state drive (SSD) [3], [4], CXL device memory has not
been integrated into a multi-tier buffer manager architecture.

HyMem 1is a single-threaded buffer manager using PMem
and DRAM as selective caches on top of the SSD level [3].
Zhou et al. [4] extended the work on HyMem with Spitfire,
a concurrent buffer manager. It uses a probabilistic migration
policy to determine on which tier pages are located and has
superior performance over HyMem’s page migration.
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HyMem and Spitfire use pointer swizzling to address
buffered pages, which is an invasive technique that requires a
buffer-managed data structure to be adapted accordingly [5].
Leis et al. proposed hardware-supported virtual memory-based
translation of page identifiers (PIDs) to physical memory
addresses as a non-invasive and easy-to-implement alternative
to pointer swizzling [5]. While the approach shows high
performance and low implementation complexity, it lacks
support for multiple byte-addressable memory tiers.

In this work, we present a three-tier buffer manager that
integrates CXL device memory. The design combines virtual
memory-based PID translation [5] and a probabilistic page mi-
gration policy [4] to determine on which tier pages are located.
This work demonstrates that these approaches combined allow
a simple integration of CXL device memory into a DBMS. We
evaluate the buffer manager design and its components in an
isolated manner with different configurations and workloads
based on the YCSB benchmark [6]. Our evaluation demon-
strates that expanding a server’s memory with CXL device
memory can be used for a buffer manager to keep more data
in memory and to reduce spilling data to slow disk storage.
We present primitives to integrate the proposed design into
an in-memory DBMS and demonstrate the integration of the
buffer manager into the in-memory DBMS Hyrise [7]

In summary, this work makes the following contributions:
1) We demonstrate the integration of CXL device memory

into a database system’s buffer manager using virtual

memory-based PID translation and probabilistic page mi-

gration (Section IIT). We provide integration details and an

open-source implementation' (Section III-G).

2) We experimentally evaluate the buffer manager with pro-
totypical CXL device memory and show its benefit of sup-
porting larger-than-local-memory workloads with higher
throughput than a traditional two-tier design locating data
only on local memory and SSD (Section IV).

3) We discuss how page migration across multiple memory
tiers can further be optimized (Section V).

II. BACKGROUND

This section introduces the CXL interconnect and buffer
pool management concepts that we build our work upon.

ISource code: https://github.com/hyrise/hyrise/tree/paper/buffermanager.
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A. Compute Express Link (CXL)

This section is based on Sharma’s introduction to Compute
Express Link [1] if not mentioned otherwise.

Protocols. CXL is an interconnect standard to connect CPUs
and peripheral devices. It is based on PCle’s physical layer
and adds coherency and memory semantics. The standard
specifies three protocols. CXL.io provides non-coherent load
and store semantics and is used for device discovery, sta-
tus reporting, address translation, and direct memory access
(DMA). CXL.cache allows a device to cache data stored on
system memory. CXL.mem allows CPUs to access CXL device
memory as cache-able memory.

Devices. The standard specifies three device types. Each
device supports CXL.io. Type I devices support CXL.cache,
Type 2 devices support CXL.cache and CXL.mem, and Type 3
devices support CXL.mem. Use cases for the device types are
smart network interface cards with coherent access to system
memory (Type 1), accelerators, such as GPUs and FPGAs
(Type 2), and memory expansion devices (Type 3).

Revisions. Five backward-compatible revisions exist. CXL
1.0 specifies the three protocols and device types. CXL 1.1
adds compliance test mechanisms. Later revisions introduce
resource pooling and topologies with single-level switch-
ing (2.0), sharing device memory and support for larger topolo-
gies with up to 4096 endpoints and multi-level switching (3.0),
and DMA across system domains (3.1). In this work, we use
a CXL 1.1-compliant Type 3 device prototype.

Programming with CXL Device Memory. CXL device
memory is exposed to a CPU as a memory-only NUMA
node [2], [8]. This allows programmers to utilize NUMA-
related system calls to interact with CXL. For example,
mbind allows setting a memory policy for a given virtual
memory region and move_pages allows moving individual
operating system (OS) pages between nodes.

B. Buffer Pool Management

Traditional DBMSs store data mainly on disk for cost-
efficiency and persistence [9]. Stored data is split into pages,
with a page size being a multiple of the OS page size. The
DBMS loads pages into a buffer pool to access the data and
writes modified pages back to disk. The buffer manager is in
charge of handling the buffer pool, which holds a fixed number
of pages, aiming to reduce disk I/O as it is more expensive than
accessing data in memory. Unused pages must be evicted if the
DBMS needs to access a page not present in the buffer pool
and the pool is full. A page eviction strategy decides on which
page to evict. A page is pinned during access to avoid eviction
and later unpinned for release. The design of a buffer manager
depends on several factors, such as the hardware setup, given
DBMS guarantees, and workloads. The design restrictions of a
buffer manager influence the storage layout of tuples or index
structures.

Conventional Page Management. Maintaining a central
hash table is a common approach to addressing pages, enabling
a direct mapping from PIDs to respective page pointers. While
this approach worked for traditional disk-based DBMS, it is

a bottleneck for processing data that fully fits into memory:
Each lookup accesses the hash table, even for cache hits [5].
Furthermore, a lookup requires another indirection when the
virtual memory pointer has to be translated to a physical page
pointer through the OS page table [5]. Pointer swizzling is an
invasive technique eliminating the central hash table lookup
for in-memory workloads: a unique PID is swizzled, i.e., trans-
formed to a virtual memory pointer, for access and unswizzled,
i.e., converted back to the corresponding PID, before eviction
to disk [10]. Following a swizzled reference does not require a
hash table lookup. While this technique improves in-memory
workload performance, each data structure has to be adapted,
complicating the implementation [5]. Using data structures not
based on trees or lists requires complex workarounds, making
pointer swizzling unsuitable in many use cases.

OS-Supported Page Management. OS-provided memory-
mapped file I/O can be used as an alternative to buffer
managers in a DBMS. However, Crotty et al. [11] identified the
use of memory-mapped file I/O via the mmap system call to
be unsuitable for a DBMS due to data safety and performance
issues. One major problem with using file /O via mmap is
that the DBMS cannot control page eviction.

Leis et al. [5] presented vmcache, a buffer manager that
relies on virtual memory for translating PIDs to physical
memory addresses but hands page faulting and eviction to the
DBMS. Their approach neither requires additional hash tables
for page management nor invasive pointer swizzling for man-
aged data structures. Instead of handling page faults, vimcache
creates a non-file-backed, anonymous virtual memory region
using mmap and relies on the OS page table and the translation
lookaside buffer (TLB) for fast page accesses. Page eviction is
controlled by the madvise (MADV_DONTNEED) system call,
which frees the physical page backing the virtual memory, and
I/O using system calls. Unlike using file-backed mmap, the
DBMS controls page eviction and reading and writing pages.
This approach enables a simple, scalable implementation while
supporting arbitrary data structures.

Page Sizes. Buffer managers can support a fixed page size or
variable page sizes. A fixed page size simplifies the allocation
logic, but objects larger than the page size must be split
across multiple pages. Accessing such objects requires more
complex code paths [5]. With variable page sizes, the buffer
manager can store a larger object on a page with a suit-
able size, circumventing object splitting. However, allowing
multiple page sizes in a single buffer pool causes external
fragmentation issues [12]. Utilizing the OS’s mapping between
virtual and physical addresses can avoid this fragmentation [5],
[12]. A buffer manager can create a virtual memory region
for each supported page size that is large enough to hold
the entire buffer pool, but each region is not fully backed
with physical memory. The buffer manager can use system
calls (e.g., madvise (MADV_DONTNEED) ) to ensure that the
accumulated amount of allocated physical memory does not
exceed the buffer pool’s capacity.

Probabilistic Page Migration. A three-tier hierarchy offers
multiple page movement paths between the tiers (see [4],



Data Structure

Allocator

Data Pointer H

BufferManager

Metadata & State Guards

ExclusivePinGuard

I | SharedPinGuard

| Frame

Local Memory Eviction |1 CXL Device Memory
: Queue Eviction Queue

| : | Data Migration Policy |

Memory and Storage Tiers

:| Virtual : iMemory | E | Filesystem / Block Device

Local Memory CXL Device Memory ‘ ! ’ SSD ‘

i Local Memory Buffer Pool CXL Device Buffer Pool

Fig. 1. Architecture of the three-tier buffer manager.

Fig. 3). Zhou et al. proposed moving pages between DRAM,
PMem, and SSD based on configurable probabilities. A read
path moves data from SSD to PMem, then to DRAM, and
lastly to the CPU cache. The write path moves data from the
CPU cache to DRAM, then to PMem, and finally to an SSD.
Furthermore, the CPU can directly (1) read from and (2) write
to PMem, and pages can directly be (3) copied to DRAM from
an SSD and (4) written back from DRAM to an SSD. With
specific probabilities for the latter four data paths, pages are
transferred to a higher tier on access. If accessed frequently,
the page is eventually promoted to the fastest tier.

ITI. CXL-BASED BUFFER MANAGEMENT

This section presents the design of our three-tier buffer
manager and how it integrates CXL device memory.

A. System Overview

Figure 1 shows the buffer manager components. Frames
handle the pages’ states and offer additional methods for
latching operations when accessing a page. Guards are helper
objects simplifying pinning and concurrent page handling. One
buffer pool exists per byte-addressable tier. A migration policy
decides where to move pages across the tiers. It controls
page eviction with one eviction queue per buffer pool. The
pools combine the eviction mechanism and access to the
physical memory through virtual memory. A buffer-managed
data structure uses the buffer manager as an allocator.

B. Page Management

The buffer manager utilizes virtual memory for PID-to-
pointer translation. In contrast to pointer swizzling or hash-
table-based buffer management, virtual memory-based trans-
lation offers an abstraction over local memory or CXL device
memory without implementing complex code logic. The buffer
manager creates a large virtual memory region using mmap
without file backing. With demand paging, new pages are
allocated either on local memory or CXL device memory.

We assume that each byte-addressable tier is exposed as one
or more NUMA nodes. Memory allocations for a virtual
memory region can be bound to the desired NUMA node via
the mbind system call. On access, the physical memory is
allocated on the configured node(s), leading to an interleaved
memory region with physical pages being backed by either
local memory, CXL device memory, or nothing (when initially
read). Maintaining only one buffered page copy is a limitation
of virtual memory-based PID translation and simplifies mem-
ory management compared to existing three-tier buffer man-
agers [4], [13]. However, it loses the ability of parallel access
to copies of the same page on both tiers. Inspired by vmcache,
we evict pages to SSD using madvise (MADV_DONTNEED)
and pwrite system calls and read into virtual memory using
pread. Leis et al. [5] argue that the performance of virtual
memory management approaches is limited by the impact of
TLB flushes and the unscalable OS page allocator. This also
applies to moving pages from and to CXL device memory.

C. Variable Page Sizes

We define a set of page sizes in power-two steps from 4 KiB
to 2 MiB similar to Umbra [12]. Each page size is assigned
to a fraction of the virtual memory region and managed by an
array of frames. Using large pages improves the performance
of allocating large objects. However, larger pages also result
in higher latency for buffer manager operations. Variable-sized
pages can store data structures without fragmenting to multiple
pages. Discrete page sizes allow to directly calculate a page’s
address (see Section III-G).

D. State Management

We leverage the state management and synchronization
mechanism proposed by vmcache [5]. Frames store the meta-
data of individual pages. A frame is a 64-bit atomic integer
storing the page state in the upper 16 bits and the page version
in the lower 40 bits. The state encodes if the page is currently
evicted or latched in exclusive or shared mode. While vmcache
uses the version for optimistic latching, we use it for the page
eviction mechanism. Additionally, we store a dirty flag with
one bit and the current NUMA node in seven bits. Storing this
data requires us to reduce the number of bits for the version
compared to vmcache. The atomic integer is updated using
a compare-and-swap operation. Busy waiting on the frame’s
latching state serializes concurrent page accesses. We use one
array of frames per page size. Each array stores the frames
for all pages of the same size. Frame arrays reside on local
memory, allowing fast access to the state by a fixed offset.

E. Page Eviction

Our eviction strategy approximates least-recently-used
(LRU) using a second-chance first-in, first-out (FIFO) queue
[14, p. 212] as commonly implemented [15], [16]. The queue
can contain frames belonging to different size types. After
unlocking a page, it is inserted into the queue with its current
version. When reaching a predefined memory limit, several
pages in the queue are evaluated for batch eviction to fulfill a



page placement request. If the page version in the queue and
the frame’s page version do not match or if the page is locked,
the queue contains a newer version of the page so we can dis-
card the current page. If the versions match, the page may be
ready for eviction. While in UNLOCKED state, we reinsert the
page at the end of the queue and transition to state MARKED.
Only MARKED pages qualify for eviction. If so, we acquire an
exclusive latch of the page and evict the data to CXL device
memory or SSD. Reinserting pages ensures the second-chance
criterion [14, p. 212]. We use oneTBB’s [17] concurrent queue
implementation (tbb: : concurrent_gqueue).

FE. Page Migration

We apply Zhou et al.’s probabilistic page migration ap-
proach defined by four probabilities. When a CPU accesses
a page on CXL device memory, the buffer manager moves
the page to local memory before performing a read and write
operation with the probabilities L, and L.,. When the buffer
manager loads a page from SSD, it loads the page into CXL
device memory with a probability of C;. and into local memory
with a probability of 1—-C,. When the buffer manager evicts
a page, the page is written to CXL device memory with a
probability of C', and to SSD with a probability of 1—C',. The
buffer manager considers an initial page allocation as a virtual
load of a zero page from SSD, so C, applies. Lazy policies
with lower probabilities lead to less frequent migrations, while
eager policies with high probabilities move pages more often.
We use the system calls mbind and move_pages to move
pages between tiers.

G. Integration Concepts

We integrate our buffer manager into the in-memory DBMS
Hyrise without changing the system’s core concepts.

Mapping Pages to Data Structures. Page state and actual
data are stored in separate memory locations. The page’s data
can be addressed via a virtual memory pointer and the state
by an index in the frame array. As shown in Figure 2, a page
identifier is a 64-bit value containing a validity bit, 5 bits for
the page size, and an index (58 bits). The combination of the
page size and the index can be unambiguously converted into
a pointer to the page and vice versa.

|Va|id| Size Type | Index |
64 63 58 0
Fig. 2. Layout of a page identifier.

Pin Guards. Pin guards are programming primitives that
simplify latching and pinning operations of data struc-
tures [15]. We use the RAII technique in C++ to ensure safe
memory access within a scope. Pin guards must be explicitly
placed at appropriate locations where data is read or written.

IV. EVALUATION

We evaluate the buffer manager and its components with
different configurations and workloads based on the YCSB
benchmark [6]. We investigate the scalability of the buffer

manager on local and CXL device memory, as well as the
performance impact of migration policies.

We conduct the experiments on a dual-socket platform with
4th Generation Intel Xeon CPUs (Sapphire Rapids), each
having 48 cores. The server has 256 GiB (8 x 32 GiB)
DDR5 DIMMs on the first socket (NUMA node 0), which
we use as local memory in the experiments. A CXL 1.1
Type 3 device prototype provided by Seagate Technology LLC
is attached via a PCIe/CXL x8 Gen4 connection to node 0.
The server contains a Micron Crucial CT500P1SSD8 NVM
Express (NVMe) SSD with 500 GB of capacity. The device is
an FPGA-based (Bittware Xilinx VU13P) memory controller
containing 64 GiB (4 x 16 GiB) DDR4 DIMMs with a speed
of 2400 MT/s. The OS is a pre-released Linux kernel version
6.3.0-060300rc1-generic to support CXL memory.

We use Intel’s Memory Latency Checker to measure mem-
ory access performance. The measurements show an idle
latency of 125.5 ns and a maximum bandwidth of 224.3 GB/s
when accessing local memory from node 0. For CXL device
memory, we observe 557 ns and 9.4 GB/s. Note that we use a
preliminary CXL device prototype. Substantially lower access
latency and higher bandwidth are expected for production-
ready CXL Type 3 devices.

A. Scalability

We run microbenchmarks with workloads based on the
YCSB benchmark to evaluate various read and write patterns.
We use one cache line (64 Byte) representing one tuple and
AVX-512 load-store instructions to simulate tuple access. The
microbenchmarks perform point lookups, updates, and full-
page scans. We adapt the workloads by creating a fixed set of
tuples distributed over pages representing a table and a set of
operations that are executed as the workload on a table. We
model access skew by generating tuple identifiers for each
operation with a zipfian distribution [18].

When an operation is executed, we pin the page in shared
mode or exclusively for updates. For point lookups and update
operations, we select a random cache line on the page and
perform the _mm512_load_si512 AVX-512 instruction for
loading a cache line into a register and _mm512_stream_
s1512 for simulated stores with a non-temporal hint. Scan
operations sequentially access a page using subsequent calls
of _mm512_load_si512. We do not perform delete and
insert operations as they require additional tracking of tuple
lifetimes. For all benchmarks, we measure the throughput in
operations per second and the latency of each operation. We
use the following workload definitions:

« Update Heavy consists of 50% point lookups and 50%

updates (equivalent to YCSB Workload A).

« Read Mostly performs about 95% of point lookups and 5%

updates (similar to YCSB Workload B).

o Scan performs full scans of pages with 5% updates (similar

to YCSB Workload E).

Setup. We evaluate the buffer manager’s scalability with
increased concurrent access to local and CXL device memory.
The benchmark execution is bound to NUMA node 0O to
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avoid NUMA effects. We turned off hyper-threading, CPU
scaling, and all NUMA balancing mechanisms. We execute the
workloads with a fixed database size of 2 GiB. The benchmark
is separately executed for a buffer pool of 2 GiB for local
and CXL device memory. For each workload, we increase the
number of threads from one to 48 in steps of two.

Results. Figure 3 shows the results. Workloads that primar-
ily use point lookups, i.e., Update Heavy and Read Mostly,
behave similarly on local and CXL device memory. Update
Heavy on CXL device memory benefits slightly from the
increased number of threads. Local memory benefits from
fewer threads. With more than 10 threads, both local and
CXL device memory exhibit similar throughput. Scan on local
memory is up to two times faster for a low number of threads
but converges to the throughput of CXL device memory with
an increasing number of threads. The average latency increases
linearly for all workloads with more threads. Operations for
Read Mostly and Update Heavy workloads take about 300 ns
for a low number of threads and 28 ps for 48 threads. The
average latency for Scan is about 12 pus on CXL device
memory at 48 threads. Access latencies differ between local
and CXL device memory for scans with fewer threads.

Discussion. The results suggest that the achieved perfor-
mance is limited by our buffer manager implementation. With
increasing threads, multiple threads access several of the eight
atomic page states in a 64-byte cache line that must be syn-
chronized between CPU cores, causing cache-line contention.
This effect is called false sharing [14, p. 561]. Furthermore,
we see the queue implementation with tbb: : concurrent_
queue as another point of contention [19]. A lower amount
of threads and large scan operations induce less contention.

B. Migration Policy

We evaluate the impact of two-tier and three-tier hierarchies
on the throughput of the YCSB workloads with fixed buffer
pool sizes. With increasing database size, we induce more page
eviction and migration operations.

Setup. We set a fixed buffer pool size of 2 GiB for local
memory and 4 GiB for CXL device memory. The buffer
manager uses all three tiers. We specify an Eager Policy with a
uniform page migration probability of one, leading to frequent
page migrations, and a Lazy Policy with a uniform probability
of 0.2, leading to less frequent migrations. For comparison,
we configure two-tier hierarchies with an SSD and either local
memory (Local Memory-SSD), or CXL device memory (CXL
Device Memory-SSD). For the Local Memory-SSD setup, the
buffer manager neither loads pages from SSD into CXL device
memory (C, = 0) nor evicts pages from local memory to
CXL device memory (C,, = 0). For the CXL-SSD setup, C,
and C,, are set to one, but accessing a page on CXL device
memory never triggers a move to local memory (i.e., L, and
L., = 0). The database size varies between 1 GiB and 8 GiB.
The benchmark is executed with 48 threads.

Results. Figure 4 shows the YCSB throughput for different
migration policies. In the two-tier setups, the throughput is
similar in all workloads until the buffer pool size is reached.
For Scan, Local Memory-SSD shows a slightly higher through-
put than CXL Device Memory-SSD. The throughput drops
drastically when the database size exceeds the buffer pool size
due to costly page migration to the SSD. With three tiers,
the total buffer pool size expands to 6 GiB. The lazy policy
outperforms most other configurations in all workloads due to
reduced page migrations and a larger buffer. The eager policy’s
throughput already drops with smaller database sizes due to
many page migrations. In the Update Heavy workload, we
observe a tipping point at a database size of 6 GiB, where
the eager policy outperforms the lazy policy. Moving pages to
SSD has the highest throughput impact, making the respective
workload I/0O-bound.

Discussion. The results show that integrating CXL device
memory into a storage hierarchy can achieve higher throughput
for working sets that exceed the local memory capacity. It
also shows that a lazy migration policy performs overall
better than an eager policy, which aligns with Zhou et al.’s
observations [4]. For both three-tier policies, the throughput



decreases with database sizes that do not exceed the combined
buffer capacity of local memory and CXL device memory.
This happens because loaded and newly created pages can be
allocated on local memory or CXL device memory, requiring
page migrations and evictions when one individual tier reached
its capacity. The optimal policy configuration lies in between
the bounds of lazy and eager policies. A lazy policy can
trigger even less page migrations with probabilities smaller
than 0.2. While we demonstrate the performance of exemplary
configurations, the optimal policy configuration depends on the
workload and the devices access characteristics and requires
parameter tuning for a given hardware setup.

V. MIGRATION OPTIMIZATION DISCUSSION

Experiments suggest that the performance of move_pages
between volatile tiers is a limitation and that using mbind
with the MPOL_MF_MOVE flag doubles the page movement
throughput. However, both system calls are serialized due
to the single-threaded design of the OS [20]. The move-
ment throughput can be improved without relying on kernel
modifications: Each thread maintains a thread-local buffer
with a region backed by the target memory tier. For page
movement, the buffer manager copies the data from the
target memory region into the threads’ buffers. Then, it calls
madvise (MADV_DONTNEED) to remove the physical mem-
ory backing of the target region and reassigns the NUMA node
using mbind. Then, the data is copied back from the threads’
buffers into the target region, allocating physical memory on
the defined NUMA node. While this increases the number
of data copies, it reduces the time spent in system calls to
maximize parallelizable operations.

VI. RELATED WORK

OS-Based Page Migration. Several OS-based approaches
exist to perform page management across multiple memory
tiers. Yan et al. propose Nimble [20], a modified Linux kernel
optimized for page migration. Nimble provides transparent
huge pages (THP) migration, multi-threaded page migration,
and concurrent migration of multiple pages, leading to up
to 15 times higher throughput of raw page migration. For
automatic page placement across multiple memory tiers, the
Linux kernel offers AutoTiering [21] and optimized NUMA
balancing (AutoNUMA) [22]. The latter promotes hot pages
using page faulting and demotes cold pages in the background.

AutoNUMA can starve pages on CPU-less nodes (e.g.,
CXL device memory). Application performance degrades the
more pages are placed on CXL device memory due to higher
access latency [23]. Maruf et al. [23] propose an application-
transparent page placement mechanism (TPP) approach for
CXL device memory, which decouples memory reclama-
tion from allocation, allowing to free local memory pages
asynchronously. Their approach outperforms the previous ap-
proaches for memory tiering by up to 18%. TPP does not allow
explicit control over page allocation and swapping to SSD.

Three-Tier Buffer Pool Management. Recent three-tier
buffer manager designs leverage PMem as an additional tier

for memory and persistent storage [4], [13]. Van Renen
et al. [3], [13] proposed HyMem, a single-threaded buffer
manager, which uses PMem and DRAM as selective caches
on top of the SSD level. Whenever a page is accessed, it
resides in DRAM. For both DRAM and PMem, the clock
replacement algorithm is used for page eviction. While a page
to be accessed residing on SSD is always loaded into DRAM,
a page residing on DRAM gets evicted to PMem if it was
recently evicted to SSD, and to SSD otherwise. HyMem uses
fixed-sized 16 KiB pages. However, pages located on PMem
can be partially loaded into DRAM using cacheline-grained
loading and a smaller page type (mini page). The authors
evaluated HyMem on emulated PMem hardware.

Zhou et al. [4] extend previous work on HyMem with
Spitfire, a concurrent buffer manager evaluated on real PMem
hardware. The authors employed a probabilistic data migration
strategy (see Section II-B), which has superior performance
over HyMem’s data migration policy.

HyMem [13] and Spitfire [4] show that a three-tier buffer
manager design can be beneficial over a two-tier DRAM-SSD
design. However, the implementations are fairly complicated
and require the use of pointer swizzling. Leis et al.’s virtual
memory-based buffer manager approach [5] (see Section II-B)
serves as a simple and extendable architecture. None of
the existing related work allows simple integration of local
memory, CXL device memory, and SSDs for explicit buffer
management in a DBMS, which we address with this work.

VII. CONCLUSION & FUTURE WORK

For working sets larger than local memory, our evaluation
shows that a buffer manager with local memory and additional
CXL device memory as memory capacity expansion maintains
a higher throughput compared to a traditional two-tier hierar-
chy with local memory and SSD. Loading and evicting pages
from and to SSD has the highest throughput impact. While
the used CXL device memory has higher access latency and
lower throughput than local memory, accesses to the device’s
memory are faster than accesses to SSD. Current results are
bound to the CXL device prototype characteristics. We ex-
pect significantly increased performance for production-level
devices. Future work needs to improve the buffer manager’s
scalability and evaluate the impact of storing data on CXL
device memory in a three-tier storage hierarchy compared to
a two-tier hierarchy. While our work is limited to a single
device prototype, future work needs to evaluate how different
throughput and latency characteristics of CXL Type 3 devices
influence the quality of three-tier buffer manager designs.
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