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Abstract— The Hungarian algorithm is a fundamental ap-
proach for a number of matching problems that find correspond-
ing elements in two sets. For instance, the optimal alignment of
proteins. Due its computational complexity, this algorithm takes
several hours for only a few thousand elements on a desktop
computer. The most common solution to increase the efficiency
is parallelization using GPUs. However, GPUs run the same
operation in all the threads in a warp. This constraint is a
limitation for the Hungarian algorithm that requires to find, in
multiple steps, the best matching among a variable number of
candidates.

In this paper, we introduce HUNIPU, a parallel version of the
Hungarian algorithm optimized for a novel architecture called
Intelligence Processing Unit (IPU). IPUs is a promising avenue
for the Hungarian algorithm since each core can independently
perform a distinct operation. To benefit from the computational
power of the IPU, we design HUNIPU to exploit the computa-
tional model of the IPU. We provide a smooth introduction to the
IPU model and its challenges and show its flexibility and potential
for numerous algorithmic advances. In our extensive experiments,
the HUNIPU outperforms the best GPU algorithm on cutting-
edge A100 GPU running 6x faster on synthetic datasets and up
to 32x on real datasets for graph alignment.

Index Terms—IPU, GPU, Hungarian Algorithm, Linear assign-
ment problem

I. INTRODUCTION

The Hungarian algorithm [1] is the cornerstone of a number
of methods that compute correspondences between two sets
of elements. Its widespread applications include disparate
problems, such as plant location planning [2], 3D shape
matching [3], resource allocation for wireless networks [4],
and graph alignment [S]-[7]. The Hungarian algorithm solves
the Linear Sum Assignment problem aiming to find the one-to-
one assignment between n agents and m tasks that minimizes
the overall sum of the costs.

Yet, the Hungarian algorithm is impractical for large data
as a result of its computational complexity. The most common
strategy to overcome the time impediment is to optimize the al-
gorithm to run in parallel. The most efficient Hungarian-based
algorithms run on Graphical Processing Units (GPUs) [8],
[9] and achieve up to 20x speedup on the CPU-optimized
counterpart in matrices for dense graphs. Yet, all the threads
in a GPU warp share the same program counter, constraining
the algorithm to run the same operation on all threads. Further-
more, the limitations of shared memory and the relatively slow
global memory bandwidth pose challenges when accessing
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the data. Due to these shortcomings, even the best GPU-
optimized Hungarian algorithm underperforms on the steps
of the algorithms that require returning the best assignment
among variable sets of candidate elements. The most efficient
Hungarian algorithm [9] takes more than 20 seconds on a
8000 x 8000 matrix. In typical applications, such as shape
matching, that run the Hungarian algorithm hundreds of times,
efficiency becomes a bottleneck.

The Intelligence Processing Unit (IPU) [10] is a machine
learning computing architecture with massive parallelism that
features independent memory for each core. As opposed to
the GPU, the IPU enables to run different instructions on
each thread with no time loss [10]. This distinctive hardware
characteristic mitigates the latency issues evident in GPUs,
particularly the inefficiencies caused by the retrieval of data
from the main memory [11].

Yet, to achieve the desired speedup, the IPU precompiles
the code into a static computation graph that is optimized
at runtime. As such, the algorithms need to be completely
redesigned to minimize the communication and balance work-
load among the cores. In spite of this, [PUs have led important
efficiency improvements in traditional data analysis problems,
such as molecular property prediction [12], link prediction on
large-scale knowledge graphs [13], differential privacy [14],
prediction models [15], graph nearest neighbors [16], and
sequence alignment [17].

Motivated by the interest in the problem and the GPUs
shortcomings, we first carefully analyze and systematize the
IPU strengths and challenges. In light of these findings, we
introduce HUNIPU, an IPU-optimized Hungarian algorithm
that returns a valid assignment in just a few seconds on a
matrix with more than 64 million elements.

In summary, our contributions are as follows.

o We categorize the IPU’s main characteristics including
the hardware architecture and the software support and
summarize the main challenges faced when designing
algorithms on IPUs.

e We revamp the Hungarian algorithm to operate on IPUs,
and provide HUNIPU, an efficient IPU version.

¢ We perform a thorough experimental comparison with
both GPU- and CPU-optimized algorithms. HUNIPU
achieves 6x speedup on synthetic datasets and up to 32x
speedup on real-world datasets than the GPU version and
up to 3000x speedup than the CPU version.



II. LINEAR SUM ASSIGNMENT

A bipartite graph is a triple G = (P, Q, E') where P, Q) are
sets of nodes, whereby PN Q = 0, |P| = n, |Q| = m, and
E C P xQ is a set of edges. We are given a cost matrix C €
RP*Q agsigning a positive real cost C;;,i € Pand j € Q
on each edge. A matching is a 1-to-1 correspondence between
the nodes in P and those in ). We encode a matching with
a binary matrix M € {0,1}"*™ with M;; = 1 indicating
a correspondence between node i € P and node j € Q. A
perfect matching is a correspondence between all the nodes in
P and those in Q.

The Linear Sum Assignment Problem (LSAP) aims to
find a maximum-cardinality matching with the smallest overall
cost. Without loss of generality, we assume that the graph G
is complete, that is £ = P x ) and that P and Q) have the
same size |P| = |Q| = n. As a consequence, the maximum
cardinality matching M is always a perfect matching.

A. The Hungarian Algorithm

The Hungarian algorithm [1] starts with a complete bipartite
graph G = (P,Q,E) and a cost matrix C and computes
an initial assignment. Next, it performs path augmentation to
improve the matching; finally, it updates an auxiliary structure
to maintain the candidate matches.

1) Initial assignment: In the first phase, the Hungarian
algorithm computes an initial matching. Assume the easy
case in which all the entries in C are 0-cost; this situation
allows for an arbitrary matching as long as we enforce one
and only match elements in P to those in (). As such, we
aim to fill the cost matrix with as many O-cost entries as
possible. We observe that if we subtract from each entry
a constant 9, the final matching is not affected while the
number of 0 entries potentially increases. Equipped with this
knowledge, we substitute the cost matrix C with a slack matrix
S computed in two steps

Sij = Cij — mkin CJi}C Sij = Sij —
—— ——

. min, cost row % min. cost column j
By subtracting the minimum column- and row-cost, the

slack matrix contains only non-negative elements.

Subsequently, we choose the initial matching from the zero
elements in the slack matrix. We denote the chosen edges
(i,7) where S;; = 0 as initial star edges. When the algorithm
terminates, the star edges are those in the optimal assignment.
Yet, the initial assignment might not be the optimum, as some
nodes might remain unmatched.

2) Path Augmentation: Path augmentation iteratively finds
and refines certain paths in a graph to improve matching.
Although node i € P may be assigned to j € @ at first,
such an assignment may not be the optimal one. To compute
the optimal assignment, we first arbitrarily select a O-cost
edge, called the prime edge. The prime edge is a candidate
to become the star edge in the process of seeking an optimal
assignment. We initiate path augmentation iteration with an
unmatched node ¢ € P and select a 0-cost edge (i,7) that
becomes a prime edge. Next, we traverse the star edge (k, j)

min Sy
A J

connected to j. The algorithm iterates the selection of a prime
edge from k until there is no further star edge in @) to traverse.
Since the algorithm terminates on a node in (), the number
of prime edges is one more than that of star edges. At this
point, we convert all the prime edges to star edges and discard
all the initial star edges. This refinement process yields an
augmentation of the total assignment by one.

3) Slack matrix update: After path augmentation, if some
node remains unmatched, and there is no O-cost edge, the
algorithm updates the slack matrix as follows. First, we detect
the uncovered edges (i, j) with the minimum value S;;. Next,
we add a constant A to the edges having the corresponding
row and column covered and subtract A from uncovered
edges. This operation produces at least one uncovered O-
edge. By repeating this matrix slack update followed by path
augmentation that adds one covered edge to the candidate
assignment, the algorithm eventually terminates with a perfect
matching.

The Hungarian algorithm requires iterative execution of
path augmentation and slack matrix update multiple times to
compute the minimum sum assignment. Notably, these steps
involve checking and updating the entire slack matrix, leading
to considerable overhead, requiring the update of candidate
assignments on variable numbers of star edges. This variability
is ill-suited for GPUs that require running the same operations
on multiple threads. We thus propose exploiting the IPU
architecture that offers more flexibility.

III. THE INTELLIGENCE PROCESSING UNIT (IPU)

An IPU consists of several tiles where each tile contains a
processor and dedicated memory [10]. A fast (8TB/s theoreti-
cal), all-to-all communication network called exchange fabric
connects the tiles. On a multi-IPU architecture, the exchange
fabric extends to all tiles on all of the IPUs. As an example,
the Colossus MK2 GC200 IPU [18] has 1472 tiles, each tile
contains one core with six threads and its own local high-
bandwidth (47.5TB/s, aggregate) and low latency (6 clock
cycles) SRAM memory with 624 KiB [16]. Hence, a single
IPU chip has 8832 working threads and 900 MiB in processor
memory in total.

Unlike traditional processors like CPUs and GPUs, IPUs
do not have global memory and shared memory but only
internal tile memory. Moreover, unlike GPUs featuring Single
Instruction, Multiple Thread (SIMT) architecture, IPUs em-
ploy a Multiple Instruction, Multiple Data (MIMD) architec-
ture, wherein each thread has completely distinct code and
execution flow without incurring performance penalties [10].
Furthermore, IPUs have built-in SRAM within the tiles, sig-
nificantly reducing the latency incurred in GPUs due to data
transfer from the global memory.

A. IPU Low-level communication

Here we delve into the low-level communication to the IPU,
through the Poplar [19] programming framework. Poplar uti-
lizes a static computation abstraction called the computational
graph, whereby a vertex is a task and an edge is a data flow.



The data is represented by a multi-dimensional tensor; each
tensor must explicitly map to the tile’s memory. Similarly, each
task must map to a number of tiles to specify the execution
position. Each operation, including loop and branching, and
the tensor dimension must be defined at compile time. Due to
the static nature of the computational graph, the data exchange
among tiles must be defined ahead at compile time.

Poplar follows Valiant’s Bulk-Synchronous Parallel (BSP)
computational model [20], wherein the execution of a task
is split into compiler-optimized steps. Each step consists
of three phases namely, the compute, synchronization, and
exchange phase. In the compute phase, all the tiles perform
independent isolated operations. Next, in the synchronization
phase, the compiler ensures that all the tiles completed their
task. Finally, in the exchange phase, the tiles share the results
of the computation. The compiler enforces the BSP model
by grouping operations into compute sets. Each compute set
executes operations in parallel on distinct tiles. No thread from
another tile can modify the tensors within the same compute
set. This ensures data integrity and consistency across the
parallel computations.

B. Algorithm design on IPUs

IPUs present a significant architectural shift, whereby al-
gorithms need a conceptual revamp to exploit the advantages
and cope with the challenges. Here, we describe the main
considerations of IPUs for algorithm design that are the core
of our IPU-optimized Hungarian algorithm.

(C1) Lack of atomic operations: IPUs do not support atomic
operations. As such, multiple threads on a tile share the
memory, incurring the risk of race conditions.

(C2) Modest tile memory: Each tile has only 624 KB of
memory. As such, partitioning the data and the computational
tasks on multiple tiles is paramount. Yet, inadequate task-
and data-mapping strategies might cause inefficiencies due to
excessive data exchange among the tiles.

(C3) Synchronization: IPUs operate under the BSP model,
all tasks must terminate before moving to the next operation.
In other words, the time for each phase is determined by the
tile that terminates last. As such, task imbalance generates idle
IPU-time and waste of computational resources.

(C4) Slow dynamic operations: The static nature of the
computational graph poses challenges to dynamic operations.
Dynamic slicing of tensors modifies or retrieves the value at
a specified index. Since indices are created at runtime, each
IPU is unaware of the value of the index in other tiles. As
such, the compiler must facilitate internal exchange without
prior knowledge of the indices, which therefore consumes a
significant portion of memory and renders the computation
inefficient.

Next, we describe how to address these challenges in
HUNIPU, our efficient IPU-optimized Hungarian algorithm.

IV. HuNIPU

Our IPU-optimized Hungarian Algorithm (HUNIPU) cap-
italizes on the advantages of the IPU architecture and over-

comes its constraints with an intelligent mapping strategy
(Section IV-A), a novel matrix compression scheme (Sec-
tion IV-B), and redesign of the algorithm (Sections IV-C-IV-H)
into six steps.

A. Mapping strategy

Mapping data to the IPU tiles in advance requires a careful
plan, as the compiler does not automatically handle the
assignment of data to the IPU’s memory.

In the context of matrix-based data mapping, the IPU offers
two main strategies, the 1D and the 2D decomposition [21],
[22]. In our context, the 1D decomposition selects a subset of
the bipartite graph’s vertices and their outgoing edges to be
assigned to a single tile. The 2D decomposition partitions the
matrix along rows and columns and allocates each partition to
different tiles.

We observe that in 1D decomposition, each tile encom-
passes all the outgoing edges of a node; as a result, a single
IPU tile has access to the row of the slack matrix. This feature
is particularly appealing for the Hungarian algorithm that
examines and stores the zero-status for each row. In contrast,
the 2D decomposition forces each tile to only access a subset
of the outgoing edges. Each tile lands only a part of the
row and needs to communicate with other tiles to access the
row’s zero-status. Therefore, we choose the 1D decomposition
mapping strategy. To ensure balanced workloads among all
tiles, we enforce an equal number of rows for each tile (C3).

B. Matrix Compression

The Hungarian algorithm operates solely on the zero-
elements within the slack matrix; thus, having access to
the zero-elements in advance can considerably enhance the
efficiency of the algorithm. To this end, we compress the slack
matrix to store the zero elements’ position and capitalize on
the IPU multithreading capabilities.

Even though each IPU tile avails six threads, the IPU
does not support atomic operations between the threads (C1).
Therefore, it is difficult to collect and count the number of
zeros for each row atomically. The naive solution would use
only one thread for each row, but this may be inefficient
because the six threads in the IPU tiles execute one instruction
at a time in a fixed order. To solve this challenge, we partition
each row of the matrix into six segments of approximately
equal size to ensure workload balance across threads (C3).
The threads work in parallel to count and store the position
of zeros within the respective segment.

gThread 0 §Thread 1 g’l‘hread 2 g’l‘hread 3 §Thread 4 gThread H

sack [13] 0 [ oJo[o[1[eo[7][22]8]2]0]

cnmpress_matrixl1|-1|2|3|4|-1|-1|-1|-1|-1|11|-1|

zero,count|1|2|1|0|0|1|

Fig. 1: Compressing the slack matrix (top), recording the O-
element position (middle) and counting the number of zero
elements for each segment (bottom).



This compression scheme improves the efficiency by scan-
ning only part of the row to identify uncovered zero elements
and only examining zero elements in the segments.

C. Step I - Initial Subtraction

Step 1 computes the slack matrix S from the cost matrix
C. To fully harness the IPU power, we apply the Poplar’s
reduce operation that computes the minimum value in each
row, followed by a subtraction operation of the minimum from
the respective row in parallel. Subsequently, we repeat the
same parallel operations for each column. We further increase
the parallelism during the matrix update by dividing each row
into six segments, one for each thread. We retrieve and update
from the tile’s memory two floats at once due to the IPU
efficient handling of two floats at a time.

D. Step 2 - Initial Matching

Step 2 chooses the initial matching among the 0-elements
of the slack matrix S. For each uncovered zero, the algorithm
covers the respective row and column and marks the 0-element
with a star. We repeat this process for each uncovered zero in
the slack matrix.

A zero element is covered if it belongs to a previously
covered row or column. Depending on the order of operations
of Step 2, this could lead to race conditions in a parallel
setting (C1). To solve this challenge, first, we compress the
slack matrix as described in Section IV-B. Then, we count
the zeros in each row concurrently, and identify the maximum
number 7 of zeros across all rows using a reduction operation
(in Figure 2, 7 = 2). Next, we apply Poplar’s sort operation to
sort all the rows of the compress matrix in descending order in
parallel. Finally, we compute the initial matching by scanning
only the top 7 columns of the sort compress matrix.

3 0 2 7 1 -1 -1 -1
1 0 2 0 1 -1 3 -1
0 3 4 2 0 -1 -1 -1
1 9 6 0 -1 -1 3 -1
(a) slack matrix (b) compress matrix

1 -1 -1 -1 3 € 2
3 1 -1 -1 f 2 p
0 -1 -1 -1 f ] % 2
3 -1 -1 -1 1 9 6

(c) sort compress matrix d) result

Fig. 2: Example of finding the initial matching from the slack
matrix (a) which is compressed (b) and sorted (c), column-
wise mark zero elements, cover rows and columns (d).

E. Step 3 - Completion Assessment

Step 3 assesses whether the algorithm found the optimal
assignment. Specifically, we update the col_cover storing
the cover status for each column according to the col_star
storing the position of the star-zero for each column and check
whether all the columns are covered. Specifically, we cover the
column if it contains a star-zero. If we use a naive mapping-
to-tile strategy for these variables, each execution of Step 3

requires exchanging both variables among tiles, significantly
hampering the algorithm performance. To overcome this situ-
ation and maintain a balanced workload per tile, we partition
col_cover and col_star in segments of 32 elements each!
and map each segment to a tile (C3). As a result, all tiles can
update the col_cover variable in parallel. Finally, we apply a
reduce operation to the binary tensor col_cover to count the
number of covered columns. If any of the columns remain
uncovered, the algorithm advances to Step 4.

FE Step 4 - Search for Alternating Path in the Bipartite Graph

Step 4 identifies a non-covered zero and primes it. Yet, scan-
ning the entire slack matrix can be computationally intensive.
Note that a row can be in one of these three states: (-1) a row
with no uncovered zeros, (0) a row with both an uncovered
and a starred zero, or (1) a row with an uncovered zero but
no starred zeros. As such, we proceed in two steps. We first
assess each row’s state and, second, we collect the information
for the entire matrix. To this end, we use the zero_status
variable to store the state for each row, using —1, 0 and 1
as flags. We assign each thread a single row of the compress
matrix to check and record the status of uncovered zero into
the zero_status. As the compressed matrix contains only the
positions of zero-elements, this strategy considerably boosts
the efficiency of Step 4.

Finally, we perform a reduction operation to determine the
maximum value of zero_status. If the maximum is —1, the
algorithm proceeds to Step 6 to introduce uncovered zeros; if
it is 1, the algorithm advances to Step 5 to find an augmenting
path; otherwise, we prime the zero-element, cover its row,
uncover its column, and reiterate Step 4.

G. Step 5 - Path Augmentation

Step 5 finds alternative paths between the prime-zero and
the star-zero. By traversing from the prime-zero to a star-
zero, the algorithm increases the size of the assignment by
one. Specifically, we execute Step 5 in two sub-steps. First,
we traverse the prime-zero and store it in the green_column
variable. Then we traverse the path in the reverse direction to
flag with a star the prime-zero.

The algorithm starts with the uncovered zero from Step 4
and primes it. We update the green_column to record the
position of the prime-zero and check if there is a star-zero in
the prime-zero column. If this is the case, as a consequence
of Step 4, there must also be a prime-zero in the same row
as the star-zero. After detecting the prime-zero, we update the
green_column with its position. We repeat this process until
there is no star-zero in the same column with the prime-zero.
Figure 3(a) highlights the primed zero in green.

After the first step, we traverse the green elements in reverse
order, mark the green zero with a star, and remove any
previously starred zeros and primed zeros (Figure 3(b)).

From Step 5, we observe that these two steps require
frequent updates or retrieval of tensor values. Moreover, the

IThe size needs to be decided at compile time. We empirically find that 32
works well regardless of the data and the architecture.
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Fig. 3: Example of path augmenting: primed zero in green (a),
traverse green elements in reverse order to update (b).

specific position index within the tensor for these operations
is computed at runtime, conflicting with the static nature of
the computational graph. To address this issue, we propose
solutions for dynamic operations on IPUs (C4).

A possible solution to avoid unnecessary data exchange is
mapping the entire tensor to a single tile. Yet, this solution
easily exceeds tile memory that is limited to 624 KiB (C2).

Our solution instead partitions the tensor and distributes its
segments across multiple tiles. Then, in the dynamic update,
we carefully record the starting and ending positions of each
tensor’s segment and ensure each segment maps to the correct
tile. With this configuration, all tiles operate concurrently. This
partition-and-distribute strategy can also be used in dynamic
slicing. Figure 4 shows an example. Let us consider a tensor
partitioned into 3 tiles, with each tile containing 3 elements.
Given the index 7, the element we intend to dynamically
slice is located in tile 2 with column 1. Its position can be
calculated as row % = 2 and column 7%3 = 1. To execute
the dynamic slicing, the three tiles process the respective
segments in parallel to obtain and store in a temporary tensor
the elements 2,6,10 from the column 1. Then, we slice the
element 2 from the temporary tensor as our final dynamic slice
result. Since an IPU contains only 1472 tiles, the maximum
length of the temporary tensor is 1472. As such, the slicing
of the temporary tensor can be performed in a single tile as
we are within the 624 KiB memory boundaries.

Tileof\/\/v\y| 1 2 | 3 |—> 2

6 [ 7 |~ ©

10

-]

|
Tile 1 ’\/\N‘y| 5 |
|

Tiez M| 9 [ 10 | 11 |—

Fig. 4: Example of dynamic slicing of element with index 7.

H. Step 6 - Slack Matrix Update

Step 6 identifies the minimum uncovered value and updates
the slack matrix to introduce at least one zero-element.

We segment each row into same size segments and assign
each segment to a thread to compute its minimum value
in parallel. Consequently, each row yields six values upon
completion. We retrieve two float values from tile memory
at once which is more efficient on the IPU. We compare each
pair, store the smaller value, and return the segment minimum
based on the minimum value of the pair. After obtaining the
six minimums for each row, we call a reduction operation
to determine the minimum in the row. Another reduction
computes the overall minimum value in the entire matrix.

After retrieving the minimum uncovered value from the
slack matrix, each thread independently processes its segment
to update the matrix. We retrieve two float values from tile
memory at once, subtract the minimum from the uncovered
elements in parallel and then add it to the elements covered
in the row and the column. Then we re-compress the slack
matrix after the modification of the slack matrix.

V. EXPERIMENTAL EVALUATION

Experiment Setup. We run HUNIPU? on a 1.325GHz Mk2
IPU with 900MB in-processor memory and Poplar SDK 3.2.0.
The CPU version runs on a high-performance AMD EPYC
7742 2.25GHz 64-Core Processor; the GPU version runs on a
modern Nvidia A100 GPU with 40GB VRAM.
Baselines. We compare our HUNIPU with
e CPU: A fast CPU implementation of the Hungarian
algorithm.?
o« FASTHA [9]: The state-of-the-art GPU-optimized Hun-
garian algorithm.?

Dataset. We conduct experiments on both real and synthetic
datasets. We generate synthetic datasets following Gaussian
distributions of different densities. To study the impact of
density of values in the cost matrix, we explore values in the
range [1, k x n] with k€{1, 10, 100, 500, 1 000, 5000, 10 000}
and n the size of the cost matrix. We generate square cost
matrices of size 512,1024,2048,4096,8 192. We set mean
k-n k-n

pu="3* and standard deviation o=="

Use case. Our algorithm and results transfer to any use of the
linear assignment problem. Yet, to validate the speedup on a
real scenario, we evaluate the methods on the graph alignment
problem [5]. We evaluate the methods on three real world
datasets HighSchool [23], Voles [24] and MultiMagna [25].
The dataset characteristics are summarized in Table I.

TABLE I: Characteristics of the real graph data in terms of
number of nodes n, number of edges m, and network type.

Dataset n m Type
MultiMagna [25] 1004 8323 biological
HighSchool [23] 327 5818 proximity

Voles [24] 712 2391 proximity

A. HUNIPU vs. Hungarian algorithm on CPU

We first compare our IPU-optimized algorithm HUNIPU
with the best CPU implementation. Table II show the rela-
tive gain achieved by HUNIPU compared to the optimized
CPU implementation for Gaussian-distributed data. HUNIPU
consistently outperforms the CPU version, expediting the
calculation by a factor of 6 to 3000. Notably, due to the
parallelization during the update of the slack matrix, HUNIPU
increases the speedup with larger matrices and for larger value
ranges. Large value range implies sparser (i.e., less dense)
cost matrices, allowing HUNIPU to exploit the parallelization
more effectively. We observe a similar speedup with uniformly
distributed data (omitted in the interest of space).

Zhttps://github.com/kouteisang/HunIPU
3https://github.com/paclopes/HungarianGPU
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Fig. 5: Runtime of FASTHA compared to HUNIPU on different matrix size and value range on Gaussian distributed data.

TABLE II: Runtime gain of HUNIPU compared to optimized
Hungarian algorithm on CPU on Gaussian distributed data.

outperforms FASTHA on different noise levels, achieving 5x
to 32x speedup. This vindicates our HUNIPU as the method

in 10n  100n  500n  1000n 5000n 10000n of choice in practical applications.
512 2249  51.86 56.73 6033 6400 5259 60.21 . .
1024 5628 14179 198.65 19421 188.68 188.62 20461 ~ TABLE IIIl: Runtime (ms) on real world graph alignment
2048  89.46 41882 52562 567.65 59671 53135 57833  datasets. HUNIPU outperforms the best GPU-optimized Hun-
4096 42.61 92748 120023 118628 115545 122259 1051.89  garjan FASTHA algorithms by nearly an order of magnitude.
8192 76.19  1870.44 2902.6 2761.65 2871.69 2880.34 3041.57
(a) HighSchool
Edges 80% 90% 95% 99 %
B. HUNIPU vs. FASTHA HuUNIPU 68.32 68.80 55.69 97.73
. . FASTHA 1258.39 1243.34 1103.90 2541.52
Here, we compare HUNIPU with FASTHA [9]. Figure 5 (b) Voles
shows the runtime varying the matrix size and the value range
for data generated using Gaussian distributions. The results Edges 80% 0% 95% 99%
. T HUNIPU 419.79 332.01 307.96 322.05
show a consistent advantage over FASTHA across distributions FASTHA 13251.8 10834.5 8722.55 0896.91
and ranges. Even in the case in which the values in the cost (c) MultiMagna
matrlx are similar, HUNIPU maintains a cgmpetltlve edge. The Fdges  Variantl VariantZ Varian3 Variantd  Variants
improvement ranges from 3x to 11x with average speedup HUNIPU  285.26 382.87 430.44 41742 42292
FASTHA  1658.74 2024.22 2246.89 2407.45 2461.41

of 6x. We observe a similar speedup with uniformly data.

C. Use case: Graph Alignment

Graph alignment aims to generate a similarity matrix de-
rived from two graphs’ adjacency matrices, representing the
pairwise node similarities between the nodes of the two
graphs [5]. Given such a similarity matrix, the Hungarian
algorithm identifies the pairwise node-to-node correspondence
with the maximum similarity.

The evaluation of graph alignment algorithms aligns a graph
with its noisy version, obtained by modifications of the edges
of the input graph [5]. We align the last snapshot of the
graph with modified versions featuring different percentages of
edges. We evaluate HUNIPU and report the average runtime.

We employ the GRAMPA alignment algorithm [26] to
compute the similarity matrix. Yet, any choice of the algorithm
would suffice, as our method only requires the similarity
matrix. GRAMPA features a hyper-parameter, 1, which we
set to the default recommended value 7 = 0.2.

FASTHA can only operate on matrix size 2", where m
is a non-negative integer. To accommodate this, we pad the
similarity matrix by filling it with O-rows and -columns to the
nearest 2" size. After padding, we run FASTHA and HUNIPU
on the similarity matrices and compare their performance.

Table III confirms on real world dataset the runtime results
achieved with the synthetic datasets. In particular, HUNIPU

VI. CONCLUSION

We introduce HUNIPU, a solution for the Hungarian al-
gorithm on the IPU, a highly parallel Multiple-Instruction-
Multiple-Data (MIMD) architecture for AI/ML tasks that sup-
ports simultaneous different operations on its cores, grouped
in tiles. As opposed to the GPU, the IPU offers dedicated, low-
latency, memory to each tile, increasing the possibilities for
parallelism. We provide a characterization of the IPU architec-
ture in terms of its algorithmic potential as well as challenges
in its programming model. Concretely, challenges lie in the
lack of atomic operations in multi-threading applications, need
for tile synchronization, enforcement of static operations, and
limited memory. Addressing these challenges, we devise HU-
NIPU, an IPU-optimized Hungarian algorithm for the linear
assignment problem that offers dynamic updates of tensors.
Our thorough experiments show that HUNIPU outperforms
state-of-the-art GPU-optimized algorithms by factors of 3x
to 32x on different data distributions. These results show
that IPUs are also amenable to algorithms beyond standard
machine learning tasks, opening for significant potential for
novel efficient algorithms.
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