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Abstract—Hash join is one of the most important and widely
used query processing operations. In many real-world appli-
cations, such as graph data analysis, join keys can be highly
skewed. However, data skew is often only a secondary design
consideration in existing CPU and GPU hash join algorithms.
We find that the data structures and algorithm steps in existing
hash joins are less efficient for handling highly skewed join keys,
leading to significant performance degradation. In this paper, we
optimize hash joins for skewed data, and propose a CPU Skew-
conscious Hash join (CSH) and a GPU Skew-conscious Hash join
(GSH). Our main idea is to detect skewed join keys and handle
skewed vs. normal keys in separate routines optimized for their
target cases. Our preliminary experiments show that compared
to state-of-the-art CPU and GPU hash joins with existing skew-
handling techniques, our proposed CSH and GSH achieve up to
8.0x and 13.5x improvement, respectively.

Index Terms—Hash join, data skew, skew-conscious hash joins

I. INTRODUCTION

Hash join is widely used and extensively studied in both
disk-based and main memory database systems [1]–[34]. Re-
cent research work optimized hash joins by taking advantage
of different hardware features, including multi-core CPUs [13],
[15]–[17], and GPUs [12], [14], [18], [23]–[26], [32]. In
many real-world applications, such as graph data analysis,
join keys can be highly skewed. The vertex degrees of real-
world graphs often exhibit power-law distributions. A small
number of vertices can have millions of neighbors, while most
vertices are connected to only a handful of edges. Therefore,
join operations on graphs often see highly skewed join keys.

Skew handling is considered in parallel hash joins in shared-
nothing databases [4]–[7], [35], multi-threaded hash joins on
multi-core CPUs [13], [15]–[17], and hash joins on GPUs [12],
[18], [23], [24], [26], [32]. Data skew results in large load
variance of join tasks in partition-based hash joins. Therefore,
existing techniques are designed to balance the task load, e.g.,
by dividing large partitions into smaller ones, and performing
dynamic task assignment. However, when data is heavily
skewed, there can be a large number of tuples with the same
join key. This renders load balancing techniques less effective
as the data size of tuples with a single skewed key can be
much larger than the average partition size.

To better understand the performance impact of data skew,
we examine a state-of-the-art CPU-based hash join algo-
rithm [16] (denoted as Cbase) and a state-of-the-art GPU hash
join [24] (denoted as Gbase). We look into the source code to
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study their skew handling techniques, and investigate the join
performance under various levels of data skew. We find that
Cbase attempts to divide large partitions into smaller ones,
and employs a task queue to dynamically balance the load
across CPU join threads. To deal with a skewed partition,
Gbase divides the R partition into sub partitions, and joins
multiple R sub-partitions with the corresponding S partition
with multiple thread blocks. Unfortunately, when both table
R and table S are heavily skewed, these techniques are less
effective. Moreover, we find that data skew is only a secondary
design consideration in the algorithms. Skewed tuples and
normal tuples are mixed together in join processing with the
same data structures and code routines. The structures and
routines are mainly optimized for low skew cases, and incur
poor behaviors that impair join performance.

To optimize hash joins for skewed data, we propose a CPU
Skew-conscious Hash join (CSH) and a GPU Skew-conscious
Hash join (GSH). Our main idea is to detect skewed join
keys and handle skewed vs. normal keys in separate routines
optimized for their target cases. CSH detects skewed keys
through sampling before the partition phase. It then designs a
hybrid partition phase similar to the hybrid hash join [2], [3],
to compute join results for skewed tuples during the partition
phase. On the other hand, GSH detects skewed keys after the
partition phase to avoid the complex code paths in CSH that
would cause code divergence and degrade GPU performance.
It designs a dedicated phase that better exploits the GPU
parallelism to compute join results for skewed tuples. Our
preliminary experiments show that compared to Cbase and
Gbase, our proposed CSH and GSH achieve up to 8.0x and
13.5x improvement, respectively.

II. BACKGROUND AND RELATED WORK

We briefly review the background on GPU programming
with an emphasis on the difference between GPU and CPU
performance considerations in Section II-A, then discuss re-
lated work on CPU and GPU hash joins in Section II-B.

A. GPU Programming

An NVIDIA GPU (e.g., A100) contains an array of (e.g.,
108) Streaming Multiprocessors (SMs). Each SM comprises
2x32 CUDA cores. In accordance with this architecture,
CUDA threads are organized hierarchically. Multiple threads
form a thread block and multiple thread blocks constitute a
grid. All threads within the same thread block execute on
the same SM, and are scheduled in groups of 32 parallel



threads (a.k.a. warps). Compared to the CPU, the GPU can
run orders of magnitude more threads. However, the execution
model is quite different. All threads in a warp perform Single
Instruction Multiple Threads (SIMT) execution. Hence, code
divergence, which can be caused by if-branches or variable
numbers of loop iterations, incurs significant cost.

The GPU memory hierarchy consists of an (e.g., 192KB) L1
cache/shared memory per SM, a (e.g., 40MB) L2 cache shared
across SMs, and a (e.g., 40GB) global memory. All threads in
a thread block share the L1 cache/shared memory. Compared
to the CPU main memory, the GPU global memory provides
much higher bandwidth (e.g., 1555 GB/s), but higher access
latency. Therefore, it is important to exploit the shared memory
to place frequently accessed thread-block data structures, and
optimize data access to the global memory (e.g., with memory
coalescing) to take advantage of the high bandwidth.

B. Hash Join

One of the most efficient join algorithms, hash join is widely
used and extensively studied in both disk-based and main
memory database systems [1]–[34]. We focus on hash joins
in main memory database systems in this work. Shatdal et
al. [8] proposed a partition-based hash join in main memory
that generates CPU cache sized partitions to reduce CPU cache
misses. Ailamaki et al. [36] examined the query execution
time of commercial DBMSs and found that CPU cache stalls
are a significant problem for queries, including joins. Boncz,
Manegold, and Kersten [9], [10] refined the partition-based
hash join by taking TLB misses into account. To deal with
high partition fanouts, which may incur frequent TLB misses
and thus impair join performance, they proposed the radix
join algorithm to perform two or more passes in the partition
phase. Chen et al. [11] exploited CPU cache prefetching to
reduce the performance impact of cache misses for hash joins.
More recent research work optimized hash joins by taking
advantage of different hardware features, including multi-core
CPUs [13], [15]–[17], GPUs [12], [14], [18], [23]–[26], [32],
Xeon Phi [21], FPGAs [20], [27], [28], and NVM [34], [37].

Skew handling is considered in parallel hash joins in shared-
nothing databases [4]–[7], [35], multi-threaded hash joins on
multi-core CPUs [13], [15]–[17], and hash joins on GPUs [12],
[18], [23], [24], [26], [32]. The skew distribution of the join
key column can result in skewed partition size and imbalanced
task load across parallel workers/threads in the join phase.
Existing techniques aim to balance the task load by dividing
large partitions, performing dynamic task assignment, and/or
assigning more GPU threads to larger partitions. However,
when data is heavily skewed, there can be a large number
of tuples with the same join key. The size of all tuples with
a single join key can be much larger than the desired average
partition size, making existing techniques less effective.

More specifically, we describe two state-of-the-art hash join
algorithms (for which we are able to obtain the source code),
and discuss their skew handling features in the following. We
choose the two algorithms as the baseline CPU hash join and
the baseline GPU hash join in this work, respectively.

Cbase: A Baseline CPU Hash Join. We choose a state-of-the-
art CPU-based hash join algorithm [16] as the baseline CPU
join. We call it Cbase. Cbase implements a parallel radix join.
It consists of the partition phase and the join phase. In the
partition phase, Cbase divides the input relation into equal-
sized segments and assigns the segments to threads. Each
thread scans its segment twice to avoid thread contention.
The first scan counts the number of tuples in the target
partitions. Based on the counts, Cbase computes the per-thread
partition output offsets in an allocated contiguous memory
space. Then, the second scan copies tuples to their target
partitions without contention. To reduce TLB misses, Cbase
performs the partition phase in two passes. Unlike the first
pass, Cbase views each partition as a partition task and adds
it into a task queue in the second pass. Then each thread
repeatedly obtains and runs a partitioning task from the queue.
In the join phase, every pair of R and S partitions is viewed
as a join task and added into a task queue. Then each thread
repeatedly obtains a join task from the task queue and carries
out the join task until all tasks complete.

To deal with data skew, Cbase employs two techniques.
First, if a partition is much larger than the average, Cbase
breaks up the partition into smaller partitions. Second, the task
queue mechanism is designed to tolerate certain load variance
of join tasks. However, it is not feasible to break up tuples
with the same join key since they always belong to the same
partition. Therefore, in heavily skewed cases, the join task load
can still be very skewed. A large task can dominate the join
phase even with the task queue mechanism.

Gbase: a Baseline GPU Hash Join. On the GPU side, we
choose a state-of-the-art GPU hash join [24] as our baseline.
We call it Gbase. In this paper, we focus on joining GPU-
resident data. Since the data transfer cost between the CPU
and the GPU can be substantial, it is a promising solution to
place a portion of the data in the GPU global memory and use
GPU to process only the GPU-resident data in heterogeneous
query execution [38]. Like Cbase, Gbase also consists of the
partition phase and the join phase. In the partition phase, Gbase
divides the input tables into shared-memory-sized partitions.
All threads scan and copy tuples to the buckets of target
partitions. If a bucket is full, Gbase allocates a new bucket
and links the buckets of a partition in a linked list. To
improve memory performance, Gbase reads a batch of (e.g., 4)
tuples into registers and reorder them in the shared memory.
Gbase writes reordered tuples to global memory with write
coalescing. Since the shared memory size is small, Gbase uses
two-pass partitioning. In the join phase, each thread block is
used to join a pair of R and S partitions.

To deal with data skew, Gbase decomposes a long linked
list of buckets in an R partition into multiple disjoint sub
lists. Then, it assigns multiple thread blocks to the partition,
each joining a sub list in the R partition with the full list
in the S partition. In this way, Gbase reduces the amount of
work in individual join tasks. However, this technique does
not handle skewed S partitions. Moreover, a skew partition can



produce much larger number of join result tuples. The current
code is less optimized for such cases and incurs significant
synchronization cost (cf. Section III).

III. PERFORMANCE IMPACT OF SKEWED DATA

We would like to understand the join performance when the
join key column is skewed. We join two equal-sized tables
on both CPU and GPU hardware. Please see the detailed
machine configuration in Section V. Each input table contains
32 million tuples. Every tuple is a pair of 4B join key and 4B
payload. We randomly generate the join keys to follow the zipf
distribution in both tables and vary the zipf parameter from 0
to 1. The join data fits into the CPU main memory and the
GPU global memory. In the volcano-style query processing,
the join output is often consumed by an upper level query
operator. To model this behavior, we allocate a join output
buffer per CPU thread or GPU thread block and overwrite the
buffer repeatedly when it is full.

Figure 1 reports the execution times of Cbase and Gbase
broken down into the partition phase and the join phase.
From the figure, we see that given the same input size, as
the join keys become more and more skewed, the execution
times of both Cbase and Gbase increase drastically. Looking
into the results, we find that the partition time stays relatively
stable. Data skew has little effect on the partition phase. This
is because the partition phase reorders and copies the input
tuples to target partitions. The workload depends on the input
table size, which keeps the same in the experiments. On the
other hand, the execution time of the join phase rockets as
the zipf factor increases. As a result, the join phase becomes
an increasingly significant component in the execution time.
It dominates the execution time at high skew cases where the
zipf parameter is 0.8–1. We examine the join phase of Cbase
and Gbase in more details in the following.

Impact of Skew on the Join Phase of Cbase. First, the
partition that contains skewed join keys becomes much larger
than the average partition size. There are a large number of
tuples with the same join keys. For example, when the zipf
parameter is 1.0, the most popular join key is shared by about
1.79 million tuples in each input table. The skew-handling
techniques in Cbase are less effective for such cases, leading
to significant workload imbalance among join tasks.

Second, Cbase employs a chained hash table. It is not
optimized to handle a large number of tuples with the same
key. The chains become very long for popular keys, causing
many dependent memory accesses for hash table probes. (Note
that while the skewed R partition cannot fully fit into the
CPU cache, the cache misses due to hash table probing is
less damaging because the memory accesses for tuples of the
skewed keys are roughly sequential.)

Finally, skewed partitions produce a large number of join
result tuples for the skewed keys. For each hash table hit,
the algorithm has to compare the R key and the S key to be
sure that the two tuples indeed match. The number of key
comparisons increases as the number of output tuples.

(a) Impact of data skew on CPU hash join.

(b) Impact of data skew on GPU hash join.

Fig. 1: Performance impact of skewed join keys.

Impact of Skew on the Join Phase of Gbase. First, Gbase
divides a long linked list of buckets in a skewed R partition
into sub lists, then joins each sub list with the full list in the
corresponding S partition. However, an S tuple is now probed
multiple times for the multiple sub lists. Moreover, table S is
also skewed in our experiments. The sub list technique does
not handle the data skew in table S.

Second, chained hashing is also used in Gbase. Like Cbase,
this incurs many dependent memory accesses for probing
skewed keys. In addition, threads in a thread block probe
the hash table for different S tuples. Since skewed keys and
normal keys see drastically different chain lengths, there can
be significant code divergence in the probe procedure.

Finally, Gbase uses a write bitmap to coordinate the writing
of join output tuples in a thread block. Each thread probes
the next tuple in the chain of its target hash bucket. Then it
atomically sets a bit in the write bitmap to indicate whether a
join output tuple is to be generated. The threads synchronize
at this point. After the synchronization, each thread counts the
number of bits to compute its output offsets and writes to the
join output buffer. This write intention checking is done for
every tuple in the chain of the hash table. Because skewed
keys see long chains, the costly synchronization and atomic
operations also dramatically increase.
Challenges for Handling Skewed Join Keys. A key obser-
vation is that there are a large number of tuples with the same
join keys. This leads to two main challenges. First, key-based
partitioning cannot evenly divide data. The generated partitions
can be very skewed. The join tasks are imbalanced, leading
to idle join threads and waste of resources. Second, existing
data structures and algorithms are optimized mainly for normal
keys and exhibit poor behaviors with skewed keys. Long
chains in the chained hash table restrict the instruction-level
parallelism in CPU. The probe and write procedure in Gbase
sees code divergence and a lot of synchronization overhead.
Hence, we are motivated to treat skewed keys as a first-class
citizen to better utilize the hardware resources.



IV. SKEW CONSCIOUS HASH JOINS

The key problem of existing solutions is that skewed join
keys are mixed with normal join keys. They are processed
using the same data structures and procedures. Hence, our
approach is to identify skewed keys and then process skewed
keys and normal keys separately. This approach benefits both
normal keys and skewed keys. First, after skewed keys are
filtered out, partitions with normal tuples can fit into the
CPU cache or the GPU shared memory as expected. There
is lower variance across the load for join tasks. Hence, the
join task load can be easily balanced among CPU threads.
Moreover, normal tuples often see similar small number of
matches. Therefore, there is lower code divergence among
GPU threads. Second, skewed keys can also benefit from this
approach because we can design more efficient join and output
procedures for skewed keys to fully exploit the hardware.

In Section IV-A and Section IV-B, we propose a CPU skew
conscious hash join, CSH, and a GPU skew conscious hash
join, GSH, respectively.

A. CSH: CPU Skew Conscious Hash Join

We propose CSH, a CPU Skew conscious Hash join. As
shown in Figure 2, CSH is based on the parallel partitioned
hash join. We introduce a skew-detection phase before the
partition phase, and process skewed tuples explicitly:

(1) Detect skewed keys through sampling: CSH samples (e.g.,
1‰) keys from table R and uses a hash table to compute
the frequencies of the sampled keys. If the frequency of a
key exceeds the pre-defined threshold (e.g., 2), the key is
marked as a skewed key. Each skewed key is allocated a
skewed partition for the R tuples with the given key.

(2) Partition table R: When partitioning table R, CSH places
normal tuples and skewed tuples into separate partitions.
For each R tuple, it checks the tuple in the skew checkup
table. If the join key is a skewed key, then the tuple is
appended to the associated skewed partition as indicated
by the part id in the skew checkup table. Otherwise, the
R tuple is appended to a normal partition.

(3) Partition table S: When partitioning table S, CSH also
checks each S tuple in the skew checkup table. For a
normal tuple, it appends the tuple to a normal partition.
On the other hand, for a skewed tuple, CSH directly visits
the associated skewed partition and produces join result
tuples for all R tuples in the skewed partition.

(4) Join normal partitions: Since skewed tuples have been
already processed in the partition phase. The remaining
partitions contain only normal tuples. Therefore, CSH can
efficiently join each pair of normal partitions. We call this
phase NM-join in the figure.

Our implementation parallelizes all the phases with multiple
CPU threads in the similar fashion as Cbase.

CSH can efficiently handle skewed tuples for the following
reasons. First, detecting skewed keys before the partition phase
allows CSH to process skewed tuples explicitly. We design
a hybrid partition phase similar to that in the hybrid hash
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Fig. 2: CPU skew conscious hash join (CSH).

join [2], [3]. Skewed S tuples are not written to partitions.
CSH produces join result tuples for skewed S tuples on
the fly. In this way, skewed S tuples are only read once.
Hence, CSH avoids the cost of copying skewed S tuples to
partitions. Second, skew detection is based on a small sample
of the R tuples. Thus, the introduced detection overhead is
quite low. Third, CSH efficiently generates join results for
skewed tuples. For a skewed S tuple, CSH performs efficient
sequential memory accesses to retrieve all R tuples in the
associated skewed partition. This procedure also avoids the
cost of verifying if the R and S keys match before generating
every join result tuple, which would be necessary after hash
table probes in the join phase. Finally, the join phase processes
only normal partitions, making it easy to achieve load balance
for multiple CPU threads.

B. GSH: GPU Skew Conscious Hash Join

We propose GSH, a GPU Skew conscious Hash join.
Figure 3 illustrates the GSH algorithm. Like CSH, the high
level idea of GSH is to detect skewed keys and process skewed
tuples separately. However, unlike CSH, GSH detects skewed
keys after the partition phase rather than before the partition
phase. This is because the partition procedure of CSH handles
normal tuples and skew tuples in different code paths. This
can incur severe code divergence in GPU, leading to poor
performance. On the other hand, the high bandwidth of the
GPU global memory can alleviate the cost of copying S tuples
in the partition phase. Therefore, we choose to perform skew
detection after the partition phase in GSH.

GSH consists of the following phases, as shown in Figure 3:
(1) Partition table R and S: GSH partitions input tables

into shared memory sized partitions. Given the high global
memory bandwidth, we implement a simple count then par-
tition procedure, which avoids the complexity of dynamic
buffer allocation of Gbase. It requires two scans for each
partition pass. Since the shared memory size is limited, like
Gbase, GSH uses two passes to partition the input tables.

(2) Detect skewed keys in large partitions: After the partition
phase, the size of each partition is known. GSH can
easily identify normal vs. large partitions by comparing the
partition size with a pre-defined threshold. A large partition
may contain both skewed tuples and normal tuples. For
each large partition, GSH samples (e.g., 1%) tuples to
detect skewed keys. GSH uses a linear probing based hash
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Fig. 3: GPU skew conscious hash join (GSH).

table to compute the frequencies of sampled keys. After
sampling, GSH marks the top-k most frequent keys in
each large partition as the skewed key. k should be chosen
to remove most skewed keys so that the normal partition
containing the remaining tuples can fit into the shared
memory. In our experiments, we find that k=3 is sufficient
to achieve this purpose.

(3) Divide large partitions into normal and skewed partitions:
For each large partition, GSH checks each R tuple against
the skewed keys. If the tuple is skewed, it is appended to an
array allocated for the associated skewed key. If the tuple is
normal, GSH appends the tuple to a normal partition. For
the corresponding S partition, GSH checks the S tuples and
appends them to either skewed tuple arrays or the normal
partition in a similar fashion.

(4) Join normal partitions: A thread block is used to join
a pair of normal partitions. For the normal partition, we
implement a normal join procedure (NM-Join) similar to
Gbase. We allocate a chained hash table in the shared
memory. Each thread scans tuples in the R partition to
insert R tuples into the hash table. Then, each thread scans
tuples in the S partition to probe the hash table for matches.

(5) Produce join results for skewed partitions: After all NM-
joins, GSH processes the skewed tuples. To fully exploit
the GPU capability, GSH computes join result tuples for
a skewed key using multiple thread blocks. Each thread
block focuses on one R tuple from the skewed R tuple
array. The threads in the thread blocks read the skewed S
tuples and writes the join result tuples in parallel. In this
way, the thread block performs coalesced memory accesses
to read skewed S tuples and write join results.

The GSH design has the following benefits. First, NM-join
handles only normal shared-memory sized partitions. It can
efficiently exploit the GPU threads to process normal tuples.
Second, like CSH, skew detection is based on a small sample
of tuples. Thus, the introduced detection overhead is quite low.
Third, compared to Gbase, GSH performs an additional copy
operation for large partitions. It divides a large partition into
skewed tuple arrays and a normal partition. Due to the high
global memory bandwidth, this copying overhead is modest.
Finally, GSH generates the join result tuples for skewed tuples
efficiently. It parallelizes the computation of join results for a
single skewed key with multiple thread blocks. Compared to

Gbase, this procedure better exploits the GPU’s parallelism.

V. PERFORMANCE EVALUATION

We evaluate the performance of our proposed skew con-
scious hash joins in this section. Section V-A describes the
experimental setup, then Section V-B reports the preliminary
experimental results.

A. Experimental Setup

Machine Configuration. Both CPU and GPU programs run
on the same machine. It is equipped with two Intel Xeon
E5-2640 v4 CPUs (2.40GHz, 10 cores/20 threads per CPU,
25 MB L3 cache) and 128GB DDR4-2133 memory. There
is a NVIDIA A100-PCIE-40GB GPU (108 SMs, 6912 CUDA
cores, 192KB L1 cache/shared memory per SM, 40MB shared
L2 cache, and 40GB global memory) with CUDA 12.1. The
machine runs 64-bit Ubuntu 18.04 LTS Linux. The programs
are compiled with GCC 7.5.0 and NVCC 12.1.

Solutions to Compare. For CPU hash joins, we compare our
proposed CSH with Cbase [16]. As described in Section II-B,
Cbase is a radix join. Besides Cbase, we also compare with
a no-partition join in the same code repository. We denote it
cbase-npj. CSH is a partitioned hash join based on Cbase radix
join. We add the skew detection phase before the partition
phase and then enhance the partition phase to process skewed
tuples separately, as described in Section IV-A. We run all
CPU hash joins with 20 threads.

For GPU hash joins, we compare our proposed GSH with
Gbase [24]. GSH performs skew detection after the partition
phase, then divides large partitions into skewed and normal
parts. Skewed tuples are processed in a separate phase that
exploits multiple GPU thread blocks to generate join results
for each skewed key, as described in Section IV-B. Our GSH
implementation considers the top-3 most frequent keys in the
sample of a large partition as skewed keys.

Workload. Both input tables contain 32 million tuples. Every
tuple is a pair of 4B join key and 4B payload. We randomly
generate the join keys to follow the zipf distribution in both
tables and vary the zipf parameter from 0 to 1. Specifically,
we generate an array of intervals for a given zipf factor. Each
array element stores an interval whose length corresponds to
the probability of the element in the zipf distribution. Then we
randomly assign a unique key to each interval. After that, for



(a) CPU hash joins. (The speedup of CSH over Cbase is reported.)

(b) GPU hash joins. (The speedup of GSH over Gbase is reported.)

Fig. 4: Hash join performance varying the zipf factor.

each input tuple, we generate a random number, and search it
in the interval array. If the number falls into an interval, the
join key of the tuple is set to the corresponding unique key. We
repeatedly generate the input tuples until the table reaches the
expected size. In our experiments, we model highly skewed
cases by using the same interval array and unique key array
for both table R and table S for a given zipf factor.

B. Preliminary Experimental Result

Figure 4 shows the hash join performance varying the zipf
factor from 0 to 1. Table I reports the time breakdown of the
hash joins for the zipf factor from 0.5 to 1.

CPU Hash Joins. As shown in Figure 4a, CSH is comparable
to Cbase at low to medium skew where the zipf factor is 0–0.4.
Cbase-npj is the worst performing solution. As the data is more
and more skewed, CSH sees higher improvement over Cbase.
Compared to Cbase, CSH achieves up to 8.0x improvement for
medium to high skew cases where the zipf factor is 0.5–1.0.

In Table I, we consider the time components that include the
computation of join results for skewed tuples, i.e. Cbase join
and CSH sample+partition. Cbase mixes skewed tuples and
normal tuples in its join phase. Its skew handling techniques
work poorly for highly skewed cases because a skewed key
can be shared by a large number of tuples. In comparison,
CSH detects the skewed keys before the partition phase
and explicitly handles the skewed tuples in the partition
phase using a technique similar to the hybrid hash join.
This significantly reduces the overhead for processing skewed
tuples. When the zipf factor is 1.0, CSH detects 870 skewed
keys and generates 5.26x1012 join result tuples from skewed
tuples, which contribute to about 99.6% of the total output.
Interestingly, the NM-join time in CSH increases modestly as
the data is more skewed. This is because the skew detection

TABLE I: Execution time breakdown.
zipf factor 0.5 0.6 0.7 0.8 0.9 1.0
Cbase partition 0.29s 0.29s 0.29s 0.29s 0.28s 0.26s
Cbase join 0.16s 0.59s 7.05s 96.9s 1084s 7593s
CSH sample+part 0.22s 0.36s 2.24s 17.6s 152s 941s
CSH NM-join 0.25s 0.47s 0.9s 1.65s 2.36s 2.55s
Gbase partition 6.78ms 6.6ms 6.8ms 6.9s 7.0ms 7.4ms
Gbase join 52ms 0.33s 1.7s 16s 115s 643s
GSH partition 5.9ms 5.9ms 6.1ms 7.7ms 12.8ms 24.5ms
GSH all other 25.8ms 49.3ms 0.214s 1.17s 9.37s 54.5s

collects mainly the highly skewed keys. Keys that are modestly
skewed are treated as normal keys and processed in the NM-
join phase. This leads to the increase of the workload of the
NM-join phase as the zipf factor increases.

GPU Hash Joins. As shown in Figure 4b, as the data
becomes more skewed, like the CPU hash joins, GSH also
sees significant improvement over Gbase. Compared to Gbase,
GSH achieves up to 13.5x improvement for medium to high
skew cases where the zipf factor is 0.5–1.0. The improvement
of GPU hash joins is more substantial than that of CPU hash
joins. This may result from the higher level of parallelism
available in the GPU.

When the zipf factor is 0–0.4, none of the partitions is larger
than the shared memory, and therefore our skew handling steps
are not used. In these cases, GSH is comparable to Gbase.

In Table I, we compare Gbase join and GSH all other as
both process skewed tuples to generate join results. We see that
as the zipf factor increases, the time of the Gbase join phase
rockets. Gbase’s sub list technique is less effective for handling
highly skewed data. In contrast, GSH spends significantly
lower amount of time to process skewed tuples. This shows
the effectiveness of our skew handling approach that detects
skewed keys and explicitly handle skewed tuples.

Experiments with Larger Input Tables. We scale up the
two input tables to have 560 million tuples with the zipf
factor = 0.7. In this case, Gbase uses about 38.5GB of the
40GB global memory. Our experimental results show that CSH
achieves 3.5x speedup over Cbase, and GSH achieves 10.4x
improvement over Gbase.

VI. CONCLUSION

In this paper, we focus on skew handling for CPU and GPU
hash joins in main memory databases. We find that existing
skew handling techniques are less effective for high skew
cases, and propose a CSH and a GSH algorithms for CPU
and GPU, respectively. Our preliminary experimental study
shows that CSH and GSH can achieve significant performance
improvement for skewed data.
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