
Sailfish: Exploring Heterogeneous Query
Acceleration on Discrete CPU-FPGA Architecture

Xing Wei1,2, Yaofeng Tu1,2, Yinjun Han1,2, Zhenghua Chen2, Xuecheng Qi2, Daojun Hua2

{wei.xing6, tu.yaofeng, han.yinjun, chen.zhenghua, qi.xuecheng, hua.daojun}@zte.com.cn
1State Key Laboratory of Mobile Network and Mobile Multimedia Technology, China

2 ZTE Corporation, China

Abstract—The hardware of modern server is being increasingly
heterogeneous as advanced accelerators, such as FPGAs, are used
together with multicore CPUs to meet the computing requirement
of analytical query workloads. Unfortunately, the earlier database
engines are designed for homogeneous servers, where query
execution is only parallelized across CPUs, but ignores the
prized FPGA resources. To exploit the available heterogeneous
resources, emerging work try to construct the cross-device query
pipeline, wherein a part of the operators run on the FPGA-
end and the rest run on the CPU-end respectively. However,
when running such a pipeline, the CPU-end and FPGA-end
operators could obtain mismatched computing resources, which
easily cause uneven processing performance between two ends,
thereby limiting whole pipeline performance or wasting comput-
ing resources. Of note, it is nearly impossible for query optimizers
to assign the matched computing resources to make CPU-end and
FPGA-end have the similar processing performance, as several
factors (e.g., operator selectivity) affect processing performance.
To tackle this problem, we propose the heterogeneous motion
operator, which can adjust the runtime computing resources (e.g.,
parallelism) of CPU-end, so as to match FPGA-end processing
performance. In addition, we further implement an FPGA
accelerator that supports parallel processing of hash join. By
integrating our motion operator into PostgreSQL with the above
FPGA accelerator, we build a prototype called Sailfish, whose
experimental performance exceeds the native acceleration scheme
by a huge margin.

Index Terms—Database, Heterogeneous System, FPGA

I. INTRODUCTION

The past few years have witnessed the rapid transformation
of Field Programmable Gate Array (FPGA) from the specific
processor to the advanced multi-function accelerator adopted
by various analytical, data-intensive applications. Comparing
to CPU and GPU, FPGA can organize its processing units into
the specific hardware circuit for target acceleration scenarios,
thereby omitting the costs of loading and parsing instructions.
Hence, FPGAs are being used in many deployment scenarios,
ranging from the supercomputing used for HPC applications to
platform-as-a-service that provides FPGA-accelerated virtual
machines. Until now, the widely-used CPU-FPGA platform is
still discrete, in which the FPGA board with many computing
and private memory resources is attached via PCIe bus as the
peripheral of CPU.

Unfortunately, traditional analytical DBMSs solely operate
on CPUs. In the past decades, to meet the strict performance
requirement of big data analysis, database engines attempt to
exploit the CPU parallelism (e.g., multi-thread and SIMD)

and node parallelism (e.g., massively parallel processing) to
speed up the query execution, yet FPGA has not attracted
attentions. Recently, a part of emerging database engines
[1]–[3] are being increasingly deployed on a heterogeneous
platform with discrete CPU and FPGA, which aim at uti-
lizing FPGA-end computing resources to facilitate the query
execution. To achieve the heterogeneous query acceleration,
earlier works [4]–[6] try to offload those CPU-heavy operators
(e.g., HashJoin) into FPGA-end, which can undertake a part
of CPU-end computing burden. Instead of speeding up an
independent operator, later works [2], [7]–[9] aggressively
hand over the contiguous operators within a pipeline to FPGA-
end with the help of reconfigurable capacity in advanced
FPGA (e.g., Xilinx FPGA Virtex-II). It is worth noting that
deploying a group of contiguous operators on FPGA-end can
not only offload more computing tasks from CPU-end, but also
amortize the overheads of cross-device data transfer and/or
synchronization into more operators, especially on discrete
CPU-FPGA architecture.

Despite the progresses made in leveraging FPGA to speedup
database, there still exists a critical issue about the mismatched
computing resources between CPU and FPGA during runtime.
More precisely, for a pipeline that leaves a part of contiguous
operators to FPGA-end, the rest of pipeline running on CPU-
end could take too many or too few computing resources (i.e.,
worker thread or process) to make its processing performance
go beyond or lag behind FPGA-end. If CPU-end provides the
higher performance, the whole pipeline will be limited by the
FPGA-end and waste the extra CPU-end computing resources.
Otherwise, the whole pipeline will be restricted to CPU-end.
Consider the processing performance of CPU-end and FPGA-
end are affected by several factors (e.g., operator selectivity),
it is very difficult for query optimizer to allocate the properly
computing resources that match the FPGA-end.

In this paper, we propose the heterogeneous motion operator
to address the above issues. Such an operator is in charge of
adjusting the runtime parallelism of CPU-end operators within
the same pipeline, so as to match the processing performance
of FPGA-end. In addition, the motion operator also plays as
the coordinator to manage the cross-device data flow so that
the pipeline across CPU-end and FPGA-end can run on the
iterator model. Based on above efforts, we further implement a
prototype called as Sailfish that integrates the motion operator
into PostgreSQL, and take only about 30% onboard resources

Operator Compute Control FPGA Acceleration

Agg

HashAgg

SortAgg

Join

HashJoin

SortMergeJoin

SemiJoin

Sort

MemSort

TopK

Scan

SeqScan

IndexScan

Others

Filter

Window

Union

Projection

Case-When

ApplicabilityLow HighComplexityLow High

Fig. 1. A Taxonomy of Operators’ Fitness to FPGA Acceleration.

to construct the FPGA-end accelerator that facilitates parallel
hash join. Notably, the remaining onboard resources could still
speedup other operators (e.g., Aggregation and Scan). We also
conduct the experiment to verify that our design could always
take proper CPU-end computing resources to fit the FPGA-end
accelerator, thereby eliminating the wasted resources.
Outline. In the rest of paper, we first describe the background
and related work about FPGA-based database acceleration in
section II. Then, we state the design of Sailfish and detail the
heterogeneous motion operator in section III. In the following,
we evaluate our design in section IV. Finally, we conclude our
paper and discuss further work in section V.

II. BACKGROUND AND RELATED WORK

A. Revisiting Heterogeneous Query Acceleration

In this section, we firstly revisit the existing strategies that
leverage FPGA to accelerate query execution, and then identify
the potential performance issue on heterogeneous environment.

① Operator Acceleration: In DBMS, a SQL can be usually
translated into the execution plan including several operators,
such as Join and Aggregation. To enable them to run
faster, FPGA as a candidate accelerator can offer a large
amount of programmable computing resources (i.e., FPGA
Logic Cells) as specific kernels or processing engines (PEs)
to execute those operators. But considering the characteristics
of FPGA [10], some compute-intensive operators are friendly
to FPGA, while they belong to the control-intensive area,
i.e., having many branch predication, FPGA could perform
worse than CPU since they need to consume many hardware
resources to form the specific control logic [11]. As depicted
in Fig. 1, we conduct a taxonomy of existing query operators
in terms of computing and control perspectives, and derived
several operators fitting to the FPGA acceleration. Specifically,
HashJoin and HashAgg are both typical compute-intensive

Scan1
(R)

Scan2

(S)

Filter1 Filter2

HashJoin

Aggrega�on

Projec�on

CPU Operator FPGA Operator

SELECT SUM(R.value)
FROM R, S
WHERE R.id = S.ID
 R. value < 10
 S. value > 20
GROUP BY R.ID

Fig. 2. Query Execution with FPGA Acceleration.

operators, and there exist massive implementation methods
for these two operators. For example, Halstead et al. [4]
implemented an end-to-end multithreading hash join on FPGA,
whose experimental results can show the speedup between 2×
and 3.4× over the multi-core approaches on the uniform and
skewed datasets. Eryilmaz et al. [6] further implemented an
aggregation operator that could be configured for the different
number of groups, which is 2.2× faster than the HashAgg
on CPU.

② Pipeline Acceleration: Recently, emerging work [2],
[7], [8], [12] try to leave a set of contiguous operators
within a pipeline to FPGA. For example, as shown in Fig. 2,
the query pipeline {Scan2 → Filter2 → HashJoin →
Aggregation} can be split into two parts, wherein the part
including HashJoin and Aggregation can be handled by
FPGA device. Considering the pipeline design [11] in FPGA,
the FPGA-end operators can be mapped into a specific state
machine and avoid unnecessary loads and stores of the
intermediate results [13]. Even though the implementation
of these operators in FPGA is trivial, the acceleration of
combination of these operators is non-trivial in FPGA. To
pipeline the FPGA-end operators, some typical researches [7],
[8] utilize the query-to-hardware compilers to generate the
hardware circuit logic automatically, and leverage the low-
latency reconfigurable function of advanced FPGA to deploy
the logic in the real-time fashion. Meanwhile, the other works,
such as doppioDB [2], build a shared data buffer for multiple
FPGA-end operators, and coordinate the data flow within the
buffer to pipeline the specific operators rapidly.

B. Achilles’ Heel of Existing Acceleration Schemes

As stated earlier, the advantages of taking FPGA as database
accelerator are quite significant (e.g., replenishing computing
resources), but how to make full of them is a really tough task.
When pushed to the limit, in the FPGA-attached heterogeneous
database bottlenecks can be attributed to the data transmission
and mismatched computing resources.

① Massive Data Transmission: Unlike the computing
tasks with abundant processing resources (e.g., CPU cores or
FPGA Logic Cells), the cross-device data transmission is still
limited by the PCIe bandwidth in the heterogeneous database
system. More concisely, for the PE assembled in FPGA, its
execution must keep its input available, which could cause
massive data transmission if its precursor operator runs on the
CPU-end. To make matters worse, if the successor operator
still runs on the CPU-end, the PE should further leverage
the PCIe to transfer its output to CPU-end, thereby causing
the severe “data ping-pong” [11]. Meanwhile, comparing to
the local memory access, the overheads of cross-device data
transmission are very costly. To remedy this situation, there
are several methodologies [1], [2], [5] to optimize the order
of query operators, the basic two of which are filtering data
as early as possible and compressing intermediate results as
much as possible. But, when facing the scenario of massive
data processing, above efforts will be not always enough.

② Mismatched Computing Resources: The key idea [2] of
pipelining a part of contiguous operators in FPGA is relatively
new, which could avoid the unnecessary cross-device loads and
stores of intermediate results, and markedly lighten the burden
of data transmission. For instance, as depicted in Fig. 2, there
are two operators HashJoin and Aggregation laying on the
FPGA-end, where the join results could be directly treated as
input of aggregation without any transmission costs. However,
when conducting a query pipeline having CPU-end operators
(e.g., Scan2 and Filter2 in Fig. 2) and FPGA-end operators
(e.g., HashJoin and Aggregation in Fig. 2), there is a main
concern arises here: during the execution of such a pipeline,
the CPU-end and FPGA-end should have matched computing
resources, thereby making each end obtain similar processing
performance and avoiding surplus and starvation of computing
resources happening on any end. Notably, it is very challenging
for existing query optimizers to foresee all related factors (e.g.,
operator selectivity, data distribution and etc) and generate the
optimal query plan with proper computing resources allocation
at both ends.

III. DESIGN

Based on the analyses presented earlier, we firstly introduce
the Sailfish design from the CPU-end and FPGA-end aspects,
and then detail how the heterogeneous motion operator works
to coordinate the query pipeline across different devices.

A. Framework of Sailfish

1) CPU-end Design: As illustrated in Fig. 3, the CPU-end
Sailfish reuses the original PostgreSQL’s processing flow, i.e.,
after parsing a specific SQL into the abstracted tree, the query
optimizer firstly transforms the tree into a query plan and then
hands the query plan over to the execution engine for further
processing. But, to make the query execution benefit from the
FPGA acceleration, Sailfish does some modification on query
optimizer and execution engine. The details are as follows.

Sr =
Ws +Wp

Ws +Wp/R+We

PCIe

CPU-end Operator

Host
(CPU-end)

Query Engine

Scan Scan

Mo�on Mo�on

HashJoin

Mo�on

Projec�on

Query
Op�mizer

Buffer

Device
(FPGA-end)

Hash Join
Processing Engine

Aggrega�on
Processing Engine

Sor�ng
Processing Engine

Onboard Memory

SQLs

FPGA-end Operator

CPU-end Data

Heterogeneous Mo�on

FPGA-end Data

Fig. 3. The Design Overview of Sailfish.

✲ QUERY OPTIMIZER: Actually, facing the abstracted tree
generated by parser, the query optimizer usually picks up
the specific query operators to replace algebraic operators
according to the cost model. Notably, in a heterogeneous
environment, if the query operators could be handed over
to FPGA acceleration, they could be treated as FPGA-end
operators. Otherwise, they will still be seen as CPU-end
operators. In fact, to check whether an operator could
be offloaded to FPGA or not, we rely on the Amdahl’s
law [14] to derive above equation, and integrate it into
the cost model for evaluating the execution gain of an
FPGA-end operator. Where, Ws and Wp are the serial-
only and parallelizable workloads of the specific operator
respectively.R is the speedup ratio of parallel processing
on the FPGA compared to the CPU, and We represents
the extra overhead incurred by passing the operation to
FPGA. When the speedup ratio Sr > 1, it indicates that
the FPGA-end operator is a better choice.

✲ EXECUTION ENGINE: Alike the traditional PostgreSQL,
Sailfish also adopts the iterator model, which means that
the iteration primitive (i.e., open, next and close) of any
operator can be directly passed to its precursor operators
when they belong to the same pipeline. For example, the
primitive next of operator Filter2 (in Fig. 2) can deliver
to operator Scan2, and Scan2 will transfer the data from
table S to operator Filter2. During the execution of such
a pipeline, adjacent operators can have same computing
capacity and similar processing throughput. But under the
heterogeneous environment, those operators within same
pipeline (i.e., heterogeneous pipeline) could be deployed
on different device, which cannot pass any primitive and
own different processing capacity. To enable the pipeline
across devices to run efficiently on the iterator model, we
introduce the heterogeneous motion operator (see details
in section III-B), which uses host memory as a buffer to
coordinate the data flow between CPU and FPGA.

PE Unit

Hash Table
(Onboard Memory)

PE UnitPE Unit

Dispatch

RegisterControl

Input

Output

PCIe
/

DMA

FPGA Build

Item-0

Table

Item-2

Item-1

…
Item-3

Split

Hash

Write

Tuple-0
Tuple-1
Tuple-2

…

Inner FPGA Probe

Item-0

Table

Item-2

Item-1

…
Item-3

Split

Hash

Read

Tuple-0
Tuple-1
Tuple-2

…

Outer

Match

Return

Result
Block-0
Block-1

Host
Memory

Host Memory

Cache

Fig. 4. The Design of FPGA-end Accelerator. Taking hash join as an example.

2) FPGA-end Design: The core components of FPGA-end
design is illustrated in Fig. 4. The register component can be
directly accessed by CPU-end, which provides the storage for
metadata and control data. The PCIe/DMA component offers
the PCIe interfaces to transmit data to FPGA-end via DMA.
The dispatch module is responsible for distributing the input to
specific PE. Each PE can independently conduct the hash join
processing based on the input. While the cache component is
in charge of temporary storage of join results for CPU-end.
To establish a better idea of what the FPGA-end acceleration
is doing, we will take the hash-join query as an example to
show the detailed workflow.

Example. To speedup a hash-join query, ① the CPU-end firstly
inquires the FPGA-end registers to preempt the available PEs
for hash join. ② Once getting the proper number of PEs, the
CPU-end will flush the metadata (including inner/outer table
schema and memory address, join conditions and etc) into the
specific FPGA registers so as to notify acquired PEs to begin
acceleration. ③ In the following, the CPU-end motion operator
will take the interfaces of PCIe/DMA module to transmit inner
tuples to FPGA-end. ④ For each received tuple, the FPGA-end
dispatch module will distribute it to target PE. ⑤ Subsequently,
the PE will extract the join column from each tuple according
to the schema, calculate its hash value and write it into onboard
hash table according to the hash value. ⑥ When completing
the transmission of inner tuples, the CPU-end will continue to
send the outer tuples to FPGA-end. ⑦ Meanwhile, facing the
constantly coming outer tuples, the PE will keep on extracting
the join columns and figure out its hash values. ⑧ Based on the
hash value, the PE will retrieve the target item from onboard
hash table, and check the join condition. ⑨ Once meeting the
join condition, the join results will be cached in a buffer (4KB
size), and then return to CPU-end in a batch.

Device
(FPGA-end)

Operator Operator Operator

Host
(CPU-end)

Operator Operator Operator

Ac�veSuspended

Expand Shrink
Buffer

Device
(FPGA-end)

Operator Operator Operator

Host
(CPU-end)

Operator Operator Operator

Ac�veSuspended

Expand Shrink

Mo�on

Buffer

Mo�on

Worker Data Block Data Flow Adjustment Flow

CPU-To-FPGA FPGA-To-CPU

Fig. 5. The Mechanism of Heterogeneous Motion Operator.

B. Heterogeneous Motion Operator

In essence, the heterogeneous motion operator is a specific
variant of the conventional gather1 operator in the PostgreSQL
version for parallel query execution. In terms of PostgreSQL’s
gather operator, it must be the root of a query pipeline, which
creates several parallel workers to process the pipeline iteration
(i.e., open, next and close) and collects the processing results
for successor pipeline. Under the heterogeneous environment,
Sailfish’s motion operator will replace above gather operator to
act as the root of CPU-end pipeline. Compared to the gather
operator, the motion operator not only supports the parallel
execution of CPU-end pipeline, but also dynamically adjusts
the CPU-end parallelism to fit FPGA-end throughput. Since
the FPGA-end only has limited dynamic adjustment capability,
the motion operator just adjusts the CPU-end parallelism, and
leaves the FPGA-end adjustment to further work.

As depicted in Fig. 5, when opening a heterogeneous motion
operator, it firstly creates the worker processes with maximum
parallelism, and then makes its related CPU-end pipeline split
into independent tasks according to the maximum parallelism.
It is worth noting that there is only a part of new workers used
for the execution of CPU-end pipeline tasks at the beginning.
For example, the motion operator in Fig. 5 initially creates
5 workers, but only activates 2 workers for the execution of
CPU-end pipeline tasks. Soon afterwards, the motion operator
still needs to apply for a piece of memory as the specific buffer
that stores the data to be sent by CPU-end or received from
FPGA-end. By analyzing the buffer occupancy periodically,
this operator can check whether there exists a computing
resource mismatch between CPU-end and FPGA-end, and
then decide to expand or shrink the computing resources (i.e.,
worker) at the CPU-end.

1) Expand: There are two scenarios that need the motion
operator to expand its CPU-end computing resources. ① When

1PostgreSQL’s Gather Operator: https://www.postgresql.org/docs/current/how-
parallel-query-works.html

the motion operator only uses less than half buffer space
to store the data blocks to be sent to FPGA-end, it means
there should be more computing resources contributing to the
execution of CPU-end pipeline. Hence, as depicted in Fig. 5,
the operator itself will wake up a worker from the suspended
queue and make it involved in the execution of CPU-end
pipeline. Above phase will be ongoing until the CPU-end
processing speed catches up with the FPGA-end consumption
rate. ② If the buffer is filled with the data blocks received
from FPGA-end, the corresponding motion operator also needs
to expand the computing resources and makes more workers
participate in the execution of CPU-end pipeline, so as to avoid
the data accumulating in the buffer.

2) Shrink: Unlike the expanding operation, there is only a
scenario that will trigger a shrinkage operation. Specifically, as
motion operator’s buffer is filled with the data blocks that will
be sent to FPGA-end, it indicates that there are many workers
involved in the execution of CPU-end pipeline, whose the rate
of generating data exceeds the consumption rate of FPGA-end.
Under such a scenario, the shrinkage operation will continue
to move the worker from the active queue into the suspended
queue until the buffer is not full. Meanwhile, considering that
the invocation of shrinkage operation reflects that the CPU-end
will exist many idle workers, the motion operator will migrate
the operators in parallel pipelines to CPU-end, thereby making
the best of CPU-end computing resources.

IV. EXPERIMENT

A. Experimental Setup

1) Hardware Environment: In default, all the experiments
are deployed on a 18-core (36-hyperthread) server equipped
with two Intel(R) Xeon(R) Gold 6150 CPUs clocked at 2.70
GHz with 25MB cache. This server is populated with 754 GB
2666 MT/DRAM DIMMs for the maximum bandwidth. The
FPGA device Xilinx VM1802 at 250MHz is outfitted to server
via PCIe generation 3. To ensure stable test performance, the
CPU frequency was stabilized at 2.70GHz by turning off the
Intel pstate driver so that the latency of 1 CPU cycle is fixed at
0.37ns. Compared to CPU, FPGA frequency is also fixed, and
one FPGA cycle consumes 4ns. Hence, one FPGA cycle is
equal to about 10.8 CPU cycles. The server runs Arch Linux
with kernel 5.4.0.112.

2) Evaluated Systems: We take two representative systems
as the baselines compared to our Sailfish.

• PostgreSQL: We take the PostgreSQL 14.0 as a baseline.
Here the hash join operation is executed using only CPU
processors without the FPGA acceleration.

• Native FPGA Acceleration: We implement a variant of
PostgreSQL 14.0, which can offload the execution of hash
join operator into FPGA-end, but does not support adjust
the computing resources of both ends during the runtime.
Hence, it is treated as the Native FPGA Acceleration (of
PostgreSQL).

• Sailfish: We further implement the prototype of Sailfish,
which can also offload the hash join operator into FPGA

0

1

2

3

4

5

6

7

8

9

10

A
ss

ig
ne

d
W

or
ke

rs
 B

y
S

ai
lfi

sh

1 2 3 4 5 6
0.00E+00

5.00E+09

1.00E+10

1.50E+10

2.00E+10

2.50E+10

3.00E+10

3.50E+10

C
P

U
 C

yc
le

s

Number of PEs

 1-Worker 2-Workers

 3-Workers 4-Workers

 PostgreSQL Sailfish

(a) Varying PE Number.

1 2 3 4 5 6 7 8 9 10
4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

1.40E+10

1.60E+10

1.80E+10

2.00E+10

2.20E+10

2.40E+10

C
P

U
 C

yc
le

s
Number of Workers

 PostgreSQL

 Native FPGA Acceleration

 Sailfish

(b) Varying Worker Number.

Fig. 6. The Effectiveness of Heterogeneous Motion.

device and introduce our proposed heterogeneous motion
operator to dynamically adjust the computing resources
of CPU-end.

Meanwhile, we implement the FPGA-end hash join accelerator
for Sailfish and native FPGA acceleration, whose utilization
of FPGA resources is shown in Table I.

TABLE I
UTILIZATION OF FPGA RESOURCES FOR HASH JOIN ACCELERATOR

LUT REG BRAM

143298(15.92%) 128471(7.14%) 463(47.9%)

3) Evaluated Workloads: We take the dataset used by [15],
which owns inner and outer tables. We assume that the inner
table R has 1M2 tuples and outer table has 10M tuples, which
follows the Zipf distribution (α = 0.99). Each tuple is a simple
< Key, P layload > pair, wherein each element occupies 4B.
Based on the setting of inner and outer tables, we try to take a
two-table hash join query to evaluate the effectiveness of our
Sailfish’s design.

B. Effectiveness of Heterogeneous Motion

1) Varying PE Number: Here we try to vary the PE number
to evaluate the effectiveness of our Sailfish. For the original

2M = 1× 106

1 2 4 80

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

CP
U C

ycl
es

N u m b e r o f W o r k e r s

 P o s t g r e S Q L
 N a t i v e F P G A A c c e l e r a t i o n
 S a i l f i s h

(a) Build Phase.

1 2 4 80

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

CP
U C

ycl
es

N u m b e r o f W o r k e r s

 P o s t g r e S Q L
 N a t i v e F P G A A c c e l e r a t i o n
 S a i l f i s h

(b) Probe Phase.

Fig. 7. Performance of Build and Probe Phases.

PostgreSQL, it does take any acceleration methods, and only
uses the CPU workers (assigned by query optimizer) to execute
query. As illustrated in Fig. 6(a), when PE number exceeds 2,
the latency of Native FPGA acceleration does not decrease
with the increase of PE number, the latency of Sailfish, on
the other hand, continues to reduce. This is due to that Native
FPGA acceleration way is not able to dynamically increase
the CPU-end computing resources (i.e., worker number) when
increasing the PE number, thereby making overall system per-
formance limited by the CPU-end processing capacity. When
comparing the PostgreSQL, the Native FPGA acceleration
with lower worker number (e.g., 4) even perform worse since
PostgreSQL could fully use the computing resource on CPU-
end. For Sailfish, it can dynamically adjust the computing
resources (i.e., the number of worker represented by chart in
Fig. 6(a)) to fit the computing resources in FPGA-end.

2) Varying Worker Number: In contrast to change the PE
number, we try to set the PE number as 5 in default. As
shown in Fig. 6(b), when increasing the worker number from
1 to 4, the query latency of PostgreSQL and Native FPGA
acceleration reduce quickly, but are still higher than that
of Sailfish, and then become stable. Notably, the latency of
Sailfish is consistently low and remains stable as the number
of threads increases. This is because that the Sailfish has the
ability to dynamically adjust the CPU-end worker number to
match the FPGA-end processing throughput so that it cannot

1M×10M 10M×10M
0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

1.40E+10

1.60E+10

C
P

U
 C

yc
le

s

Dataset Size

 PostgreSQL

 Native FPGA Acceleration

 Sailfish

Fig. 8. Overall Performance under Different Dataset Sizes

be limited by the CPU-end bottleneck. While for the traditional
PostgreSQL and Native FPGA Acceleration, they do not have
the ability to increase their assigned CPU-end worker number,
thereby suffering from the limited CPU-end performance.

C. Performance of Build and Probe

1) Build Phase: As depicted in Fig. 7(a), we measure the
performance of build phase of the three evaluated systems by
varying the worker number. For fairness, we use the fixed
PE number (i.e., 5). In build phase, when the worker number
increases, the latency of three systems decreases and then
tends to be stable. When the worker number is small (about
1 − 4), the build cost of Sailfish is the lowest. When the
worker number is 1, the build time cost of Sailfish, Native
FPGA acceleration and PostgreSQL are 432 CPU cycles, 1010
CPU cycles and 1200 CPU cycles respectively, and the latency
of sailfish is only 42.8% and 36% of the latter two systems.
The reason is that Sailfish can dynamically adjust the assigned
CPU-end worker number to make the processing rate of CPU-
end catch up the FPGA-end. Notably, only when the worker
number increases to 8, the build performance of PostgreSQL
can catch up Sailfish.

2) Probe Phase: Now we further evaluate the performance
of probe phase by varying worker number. The measurement
configuration is the same as that of build phase. As shown
in Fig. 7(b), Sailfish performs the best in all systems when
using the lower worker number (about 1−4). When the worker
number is 1, the latency of Sailfish, Native FPGA acceleration
and PostgreSQL are 789 CPU cycles, 2916 CPU cycles and
3450 CPU cycles respectively, and the latency of Sailfish
is only 27.1% and 23% of the latter two systems. For the
same reason as in Build Phase, sailfish can dynamically adjust
the resource schedule effectively between CPU and FPGA to
reduce CPU idle time and lower system latency of probing.
Meanwhile, the probe performance of PostgreSQL and Sailfish
will go to deuce when the worker number increases to 8.

D. Performance under Different Dataset Sizes

At last, we measure the latency under small size of dataset
(1M × 10M) and medium size of dataset (10M ∗ 10M). As
shown in Fig. 8, the latency of the three systems do not
differ significantly on the small dataset because that both

CPU and FPGA resources are abundant. When the dataset
volume increases, that is, under the medium dataset scale, the
advantage of sailfish is obvious compared with Native FPGA
acceleration and PostgreSQL, because at present the CPU or
FPGA resources are at full load, and the resource usage of the
another one needs to be dynamically adjusted to improve the
overall system performance.

V. CONCLUSION AND FURTHER WORK

Incorporating the FPGA accelerator into a real-world query
engine is a non-trivial mission, which requires thinking of the
equilibrium of CPU-end and FPGA-end computing resources
on the discrete architecture. Tackling this issue leds us to
design the heterogeneous motion operator that can adjust the
runtime computing resources (i.e., multicore parallelism) of
CPU-end according to the processing performance of FPGA-
end. Based on this, the query performance can be maximized
by using as few CPU-end computing resources as possible.
By integrating the motion operator into PostgreSQL, our
experimental results reveal that it can achieve the significant
performance advantages when comparing to the native FPGA
acceleration.

In the further, we try to explore the following directions for
more performance improvement of database engines deployed
on the heterogeneous platform.
Heterogeneity-aware Optimizer: For the query optimizer in a
heterogeneous database, it is a challenge to find out the optimal
query plan from the huge enumeration space including lots of
candidate operators for CPU and FPGA, different granularities
for those operators and so on. Therefore, it is time to integrate
a learning model into query optimizer so that it could quickly
pick up the proper query plan from the huge search space. In
addition, the query optimizer can also use the learning model
to guide the resource scheduling at the compile so that CPU-
end and FPGA-end have the matched processing performance.
Compute Express Link: Recently, Intel as the leader proposes
the off-socket interconnect called Compute Express Link (i.e.,
CXL) that offers the high-speed shared memory between CPU
and accelerators (e.g., FPGA and CPU), and supports the cache
coherency across devices [16]. Although there is still no CXL-
capable device, such a promising technique drives the industry
and academia to propose several prospects that totally remove
the overheads of cross-device data transmission and enable
the accelerator to become a co-processor in collaboration with
the CPU. But, under such a tightly-coupled architecture, CPU
and FPGA are still independent devices, which have own
computing resources respectively, while reserving the issue of
mismatched computing resources as before.

ACKNOWLEDGMENT

This work was supported by the National Key Research and
Development Program of China (2021YFB3101100).

REFERENCES

[1] L. Woods, Z. István, and G. Alonso, “Ibex - an intelligent storage engine
with support for advanced SQL off-loading,” Proc. VLDB Endow., vol. 7,
no. 11, pp. 963–974, 2014.

[2] D. Sidler, Z. István, M. Owaida, K. Kara, and G. Alonso, “doppiodb:
A hardware accelerated database,” in Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, S. Salihoglu, W. Zhou,
R. Chirkova, J. Yang, and D. Suciu, Eds. ACM, pp. 1659–1662.

[3] S. Huang, L. Chang, I. E. Hajj, S. G. D. Gonzalo, J. Gómez-Luna,
S. R. Chalamalasetti, M. El-Hadedy, D. S. Milojicic, O. Mutlu, D. Chen,
and W. W. Hwu, “Analysis and modeling of collaborative execution
strategies for heterogeneous CPU-FPGA architectures,” in Proceedings
of the 2019 ACM/SPEC International Conference on Performance
Engineering, ICPE 2019, Mumbai, India, April 7-11, 2019. ACM,
2019, pp. 79–90.

[4] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “Fpga-
based multithreading for in-memory hash joins,” in Seventh Biennial
Conference on Innovative Data Systems Research, CIDR 2015, Asilomar,
CA, USA, January 4-7, 2015, Online Proceedings, 2015.

[5] X. Chen, Y. Chen, R. Bajaj, J. He, B. He, W. Wong, and D. Chen, “Is
FPGA useful for hash joins?” in 10th Conference on Innovative Data
Systems Research, CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings, 2020.

[6] Z. F. Eryilmaz, A. Kakaraparthy, J. M. Patel, R. Sen, and K. Park,
“FPGA for aggregate processing: The good, the bad, and the ugly,” in
37th IEEE International Conference on Data Engineering, ICDE 2021,
Chania, Greece, April 19-22, 2021. IEEE, 2021, pp. 1044–1055.

[7] C. Dennl, D. Ziener, and J. Teich, “Acceleration of SQL restrictions
and aggregations through fpga-based dynamic partial reconfiguration,”
in FCCM 2013, Seattle, WA, USA, April 28-30, 2013. IEEE Computer
Society, 2013, pp. 25–28.

[8] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Brezzo, S. W. Asaad,
and D. Dillenberger, “Database analytics: A reconfigurable-computing
approach,” IEEE Micro, vol. 34, no. 1, pp. 19–29, 2014.

[9] D. Mahajan, J. K. Kim, J. Sacks, A. Ardalan, A. Kumar, and H. Es-
maeilzadeh, “In-rdbms hardware acceleration of advanced analytics,”
Proc. VLDB Endow., vol. 11, no. 11, pp. 1317–1331, 2018.

[10] P. Papaphilippou and W. Luk, “Accelerating database systems using
fpgas: A survey,” in FPL 2018, Dublin, Ireland, August 27-31, 2018.
IEEE Computer Society, 2018, pp. 125–130.

[11] J. Hoozemans, J. Peltenburg, F. Nonnemacher, A. Hadnagy, Z. Al-Ars,
and H. P. Hofstee, “Fpga acceleration for big data analytics: Challenges
and opportunities,” IEEE Circuits and Systems Magazine, vol. 21, no. 2,
pp. 30–47, 2021.

[12] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A frame-
work for hybrid CPU-FPGA databases,” in 25th IEEE Annual Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines, FCCM 2017, Napa, CA, USA, April 30 - May 2, 2017. IEEE
Computer Society, 2017, pp. 211–218.

[13] J. Fang, Y. T. B. Mulder, J. Hidders, J. Lee, and H. P. Hofstee, “In-
memory database acceleration on fpgas: a survey,” VLDB J., vol. 29,
no. 1, pp. 33–59, 2020.

[14] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in American Federation of Informa-
tion Processing Societies: Proceedings of the AFIPS ’67 Spring Joint
Computer Conference, April 18-20, 1967, Atlantic City, New Jersey,
USA, ser. AFIPS Conference Proceedings, vol. 30, pp. 483–485.

[15] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main mem-
ory hash join algorithms for multi-core cpus,” in SIGMOD 2011, Athens,
Greece, June 12-16, 2011, T. K. Sellis, R. J. Miller, A. Kementsietsidis,
and Y. Velegrakis, Eds. ACM, 2011, pp. 37–48.

[16] Intel, “Compute express link,” https://www.computeexpresslink.org/.

