
An Empirical Performance Comparison between
Matrix Multiplication Join and Hash Join on GPUs

Wenbo Sun Asterios Katsifodimos Rihan Hai
Delft University of Technology

Delft, The Netherlands
{w.sun-2, a.katsifodimos, r.hai}@tudelft.nl

Abstract—Recent advances in Graphic Processing Units
(GPUs) have facilitated a significant performance boost for
database operators, in particular, joins. It has been intensively
studied how conventional join implementations, such as hash
joins, benefit from the massive parallelism of GPUs. With the
proliferation of machine learning, more databases have started
to provide native support for the basic building blocks of
ML algorithms, i.e., linear algebra operators such as matrix
multiplication (MM). Despite the recent increasing interest in
processing relational joins using matrix multiplication (MM-
join), two crucial questions still remain open: i) how efficient
are current MM-join implementations compared to the GPU-
based join algorithms; ii) how should practitioners choose among
MM-join and conventional GPU-based joins given different data
characteristics.

In this paper, we compare the execution time, and memory
I/O of MM-join against multiple GPU hash joins. An empirical
analysis of our experimental results reveals that the state-of-the-
art hash join implementation shows substantial scalability for
various data characteristics. In contrast, MM-join outperforms
the SOTA hash join in low join selectivity and low table car-
dinality but shows unsatisfactory scalability due to synchronous
data movement and computation.

Index Terms—Matrix Multiplication Join, GPU, Hash Join

I. INTRODUCTION

The rapid advancement of GPUs’ massive parallelism and
high memory bandwidth has been the strong driving force
for GPU-accelerated relational query processing. Joins are
among the most useful, yet expensive operations in relational
databases. Together with the evolving GPU architectures,
intensive research effort [9, 18, 14, 10, 20, 22] has driven
significant speedups for join operations over GPUs.

At the moment, many database vendors seek solutions to na-
tively support ML operators (i.e., linear algebra) in databases
[6, 5]. However, the mixing relational and LA operators in
ML applications introduces diverse data structures and soft-
ware stacks, causing considerable maintenance costs and data
transformation overhead. As such, a unified data representation
and operators are highly desirable for ML practitioners. As
the most common LA operator in ML workloads, matrix
multiplication (MM) has gained significant speedups on GPUs
[16], making it promising for bridging the gap between ML
and relational query processing. Lately, MM has been shown

This work is co-funded by the European Union Horizon Programme
call HORIZON-CL4-2022-DATA-01, under Grant Agreement No. 101093164
(ExtremeXP).

key value

0 ...

1 ...

3 ...

4 ...

key value

2 ...

4 ...

3 ...

7 ...

0 ...

0

1

2

3

4

5

6

7

Common
Domain

0 1 2 3 4 5 6 7
0 1
1 1
2 1
3 1

0 1 2 3 4 5 6 7
0 1
1 1
2 1
3 1
4 1

0 1 2 3 4
0 1
1
2 1
3 1

MC=MRMS
T

MR MS

R S

key R.Value S.value

0

3

4

SELECT R.key, R.value, S.value FROM R
JOIN S ON R.key=S.key

Fig. 1: Example join query and MM-join implementation

capable of relational query processing, such as equi-join, semi-
join, and group-by aggregations [1, 7, 12, 11]. Fig. 1 illustrates
an example of evaluating join through matrix multiplication
(MM-join). MM-join encodes relations as adjacency matrices
where keys are mapped to a common domain. The relationship
between tuples can be found through matrix multiplication
over binary sparse matrices.

CPU-based MM-join is not a good match for data-intensive
applications, due to the overhead of data transformation and
high computational complexity. The recent advances in GPU
have alleviated these problems and facilitated MM-joins as a
promising implementation of join algorithms. The dedicated
numeric instructions and hardware accelerators on modern
GPUs contribute substantial speedup to linear algebra (LA)
operators like spMM. The spMM kernel tested on Nvidia A100

[16] can achieve a 25x speedup to its CPU counterpart. From
the view of the programming model, branching instructions
for tuple matching in hash joins introduce expensive thread
divergence [4]. In contrast, simple algebraic instructions in
MM-join can benefit from data prefetching [21] and efficient
caching [8].

In this work, we focus on the discussion over hash joins,
which have been shown to be highly effective on both CPUs
and GPUs in previous studies [19, 9, 18]. Recent work
TCUDB [11] has reported that in certain cases, the GPU-
based implementation of MM-join outperforms a GPU hash
join algorithm[22]. Hence, MM-join seems to be a promising
option to implement join algorithms over GPU hardware.
However, none of the existing works provide a systematic
investigation on the cases where MM-join is faster. Therefore,
in this paper, we attempt to answer the following research
question:

When do MM-joins outperform GPU hash joins?

More specifically, we are interested in exploring how data
characteristics such as cardinality, skewness, and join selectiv-
ity affect the relative performance of MM-join as compared
to GPU hash joins.

Contribution. This paper reports on an empirical performance
comparison between MM-joins and GPU hash joins in inves-
tigating the usability of MM-join given diverse data charac-
teristics. Our contributions can be summarized as follows:

• We choose an implementation of MM-join and four
representative GPU hash join algorithms (Table I), and
compare their execution time given varying values of
dataset cardinality, skewness, and join selectivity.

• We evaluate the memory usage and I/O of MM-join
regarding a wide range of data characteristics, and show
how memory I/O affects execution time.

• We implement the MM-join using Pytorch tensor primi-
tives to evaluate the performance of MM-joins in Python
environment - a very common choice of practitioners for
data science workloads. 1

• We validate the performance of MM-join on real-world
datasets and observe that MM-join is more suitable for
small-scale data with low selectivity.

II. JOIN APPROACHES

In this section, we elaborate on the MM-join, and briefly
explain four representative hash join implementations. Table I
gives an overview of their characteristics.

A. Matrix Multiplication Joins

MM-joins essentially represent relations as adjacency ma-
trices under a common key domain and join tuples using
matrix multiplication, which have been widely used in graph
query processing like graph traversal. Recent works [3, 7, 12]

1We plan to release our code soon as open-source.
2https://github.com/rapidsai/cudf
3https://thrust.github.io/

TABLE I: Overview of join algorithms to be evaluated

Algorithm Approach Description Library
Hash Join CLASSIC [9] Radix hash join CUDA

PW[20] Warp execution;
bucket-chain pool CUDA

AMHJ [14] Cooperative groups;
load balancing CUDA

TQP [10] Radix hash join Pytorch
+ CUDA

cuDF2 Partitioned hash join Thrust3

+ CUDA
MM-join TCUDB [11] MM-join CUDA

TCU_MM MM-join Pytorch
+ CUDA

Algorithm 1: Matrix Multiplication Join
Input : R,S: input relations
Output: pairs: matched index pairs

1 CR, CS = len(R), len(S)
2 //CUDA reduce
3 Rmax, Smax = max(keyR), max(keyS)
4 K = max(Rmax, Smax)
5 key_dict = dict(zip(union(keyR, keyS), range(0, K))
6 rowsR = range(0, CR), rowsS = range(0, CS)
7 columnsR = 0, valuesR = 1
8 columnsS = 0, valuesS = 1
9 //CUDA parallel

10 for i ∈ [0, CR) do
11 columnsR[i] = key_dict[keyR[i]]
12 end
13 //CUDA parallel
14 for i ∈ [0, CS) do
15 columnsS [i] = key_dict[keyS [i]]
16 end
17 MR = cuda_construct_CSR(rowsR, columnsR, valuesR)
18 MS = cuda_construct_CSR(columnsS , rowsS , valuesS)
19 MC = cuda_sparse_multiplication(MR, MS).to_COO()
20 pairs = list(zip(MC .rows, MC .columns))
21 return pairs

also propose MM-based methods to solve set intersection and
relational join processing.

MM-join process. We illustrate the process of matrix multi-
plication join with the pseudo-code in Algorithm 1, which has
four steps. We explain Algorithm 1 with the running example
in Fig. 1.
1) We first calculate the maximum key value in R and S to
construct the common domain (Lines 1-5), resulting in [0, 7];
2) Then we fill non-zero values and positions in CSR format
to get MR and MS (Lines 6-18). The column indexes of the
matrices are identical to the keys’ positions in the common
domain, and the row indexes are the row numbers of keys in
original relations;
3) We execute spMM over MR and transposed MS (Line 19);
4) Finally, we extract row and column numbers of non-zero
values in MC as the join results (Line 20). The row and
column indexes of MC are row numbers of matching tuples
in R and S, respectively.

Complexity analysis. The high computational complexity and
memory consumption have hindered the application of MM-
joins in CPU-based databases. In Algorithm I, transforming

relations to matrices requires extra time and memory space
based on the number of tuples and distinct keys, which is
infeasible for relations with billions of rows. Even though
the CSR format can reduce memory usage, the computational
complexity of sparse matrix multiplication (spMM) can not
be further reduced: the best-known complexity of spMM is
O(n2)4 [23], which is higher than O((|R| + |S|) ∗ log(|R|))
of a radix hash join algorithm [2], where |R| and |S| represent
the cardinalities of the two tables participating the join.

TCUDB [11]. As discussed in Section I, the recent advances in
GPU have alleviated these problems and facilitated MM-joins
as a promising implementation of join algorithms. TCU is the
first GPU query engine using pure LA operators to evaluate
relational queries including selection, projection, equi-join,
and aggregations. This work was inspired by the highly
efficient tensor core (TCU) [15], hardware accelerators for
matrix computations.

B. Parallel Hash Joins

A parallel hash join algorithm contains three phases: par-
tition, build, and probe. First, in the partition stage, the
original relations are first sliced into segments according to
the available parallelism. Second, each thread builds a local
partition which then will be merged with other partitions,
resulting in the global partitions. Third, threads subsequently
build a hash table for each partition and locate matching pairs
by probing tuples in the hash tables. Existing approaches [9,
22, 18, 20] for GPU hash join implementations, facilitate
performance optimization through utilizing evolving GPU
architecture features. In the following, we explain the GPU-
based optimization techniques in each approach and their
reported performance boost.

CLASSIC [9] proposes six parallel primitives to implement
four classic joins (hash join, sort-merge join, indexed nested
loop join, non-indexed nested loop join) on GPUs. The GPU
implementations utilize coalesced memory access and shared
memory besides the high parallelism of GPU, gaining up to a
7x speedup compared with their CPU counterparts.

PW [20] The conventional parallel hash join needs global
synchronizations between partition, build, probe phases. Such
a coarse-grained data dependency prohibits overlapping data
movement and computation, introducing considerable memory
stall. To overcome the large memory stall caused by global
synchronization, PW pre-allocates a reusable memory pool
containing a chain of buckets for thread-local storage. When
a bucket is fully filled, the subsequent data are stored in
the succeeding empty bucket, and the filled bucket can be
concurrently used in the subsequent phases. Although the pre-
allocated pool requires more memory space on average, the
fine-grained buckets in the pool break the global data depen-
dency and pipeline the three phases in hash joins, significantly

4The complexity of spMM depends on matrix shapes and sparsity. Here we
use an approximate value to show the complexity gap between spMM and
hash join.

reducing the memory stall. The optimization brings up to 10x
speedup compared to CLASSIC.

AMHJ [14] Apart from the techniques in PW, AMHJ utilizes
cooperative groups introduced by CUDA 9.0 for more flexible
thread partitioning and execution. In this way, threads in a
block can be further partitioned according to the number of
data segments, reducing the negative impact of uneven data
distribution in the hash partitioning stage. Moreover, with the
assistance of dynamic parallelism, the work-sharing strategy
is applied to mitigate the imbalanced workloads of each warp
group. The evaluation in [14] shows AMHJ outperforms PW
by up to 9x with real-world multi-way join tasks. However,
AMHJ is designed for multi-way joins. We will re-evaluate
the speedup in two-way join tasks.

TQP [10]. The tensor query processor (TQP) is a query
processing engine built on tensor computing runtime (TCR)
designed for intensive algebraic computing. Popular TCR
implementations like Pytorch [17] provide abundant parallel
primitives. TQP supports fully functional relational operators,
including radix hash join and sort-merge join. The radix hash
join in TQP is a naive implementation. Due to the nature of
algebraic operators, TQP uses multiple tensor primitives to
implement equivalent item-wise operators in hash join, such
as scan and filter. The extra time consumption of composite
operators deteriorates the performance compared to dedicated
GPU hash joins.

C. Comparison goals

MM-join outperforms GPU hash join algorithms in certain
cases, as reported in recent studies [11, 3]. However, the
comparison was not conducted between MM-join and the
state-of-the-art hash join algorithms, i.e., PW, AMHJ. Thus,
in Section III, we extensively compare the performance of
MM-join with representative GPU-based parallel hash joins
approaches in Section II-B. TCUDB can process both two-way
and multi-way natural joins over sparse matrix representations.
As an early work, we only evaluate the two-way natural join
because it is the most fundamental join operation.

For a fair comparison, we make the following remarks:
i) conventional hash join algorithms were not designed for
execution over tensor cores. Thus, in this work we focus on
the evaluation of MM-join in TCUDB with CUDA cores.
i) TQP is implemented in Python. To compare the MM-join
of TCUDB with TQP, besides the CUDA-native TCUDB,
we have also developed a Python-based MM-join following
Algorithm 1, i.e., TCU_MM in Table I.

III. EVALUATION

We evaluate the performance of join algorithms in Table I
w.r.t. execution time and memory Below we first introduce
the experimental settings, including a large variety of real and
synthetic datasets. The experiment results are then presented
together with an empirical analysis of performance with re-
spect to different parameter combinations.

TABLE II: Characteristics of dataset in the evaluation

Dataset |R| ratio selectivity z
synthetic 212...21 [0.1, 0.9] [0.1, 0.9] [0, 1.0]
company_year 1,901,021 0.29 0.09 0.82
cast_movie 1,832,199 0.32 0.50 0.02

A. Experimental settings

We focus on the performance in two-way join tasks without
materialization. All experiments are carried out on an NVidia
GeForce RTX3060 with 6GB global memory. Each measure-
ment is conducted with ten times repetition.

Parameters. To test the impact of different data characteristics
on performance, we first evaluate the algorithms considering
four parameters: cardinalities of the two relations to be joined
(|R| and |S|), cardinality ratio of right and left relations
(ratio = |S|

|R|), selectivity (sel), skewness of the left relation
(z, shape parameter of Zipf Distribution).

Synthetic datasets. We have implemented a data generator
based on the aforementioned four parameters. It first produces
integers as left keys according to cardinality and z, then uses
ratio and selectivity to determine the range of right keys.
The ranges of parameters produce 1375 pairs of relations.

Real datasets. In addition to the synthetic data, we selected
two pairs of real-world relations from the IMDB dataset [13]
for evaluating the usability of TCUDB. Namely, we choose
cast_movie that contains cast_info and movie_info tables;
company_year covers movie_companies and movie_title ta-
bles. The data characteristics are listed in Table II.

B. Evaluation on synthetic data

The performance of a join algorithm is not only related to
its theoretical complexity but also affected by the character-
istics of datasets, such as skewness, and selectivity. In this
section, we will use synthetic datasets covering different data
characteristics to test the performance of join algorithms in
Table I.

1) Execution Time: We evaluate the execution time of four
CUDA-native implementations in Table I on synthetic datasets,
i.e., CLASSIC, PW, AMHJ, and TCUDB.

Q1 : For what cardinalities does TCUDB perform the best?

Fig. 2 shows the mean and standard error of execution
time regarding different |R|. PW and TCUDB remarkably
outperform the AMHJ and CLASSIC in terms of both stability
and performance. In the following analysis, we will focus on
the comparison between PW and TCUDB.

Observation & Analysis. TCUDB outperforms PW when
|R| < 218. The results of TCUDB when |R| > 220 are
missing because its memory usage exceeds memory capacity.
Moreover, the total volume of data in the join operation
is determined by both |R| and |S|. Since we use ratio to
control |S|, we present a heatmap in Fig. 3 to demonstrate

212 213 214 215 216 217 218 219 220 221

cardinality ||R||

100

101

tim
e

(m
s)

Implementations
AMHJ
CLASSIC
PW
TCUDB

X

Fig. 2: Average execution time under various |R|

to speedup of TCUDB to PW under different cardinality. The
peak speedup at different R varies to ratios. As ratio in
combination with |R| reflects |R|+ |S|, we conclude that the
peak speedup of TCUDB is related to total cardinality.

Q2 : How do selectivity and skewness affect the performance
of TCUDB?

We now turn to examine the impact of skewness and
selectivity on the performance of different approaches. Fig.
4a and 4b show the execution time of PW and TCUDB with
different skewness-selectivity combinations respectively.

Observation. Fig. 4a does not show a clear correlation be-
tween the performance of PW and skewness, whereas TCUDB
performs significantly faster when sel ∈ [0.1, 0.3], and shows
slight speedup when z increases.

Analysis. This specific behavior of TCUDB to selectivity
is the result of an important difference: hash join needs to
compare every pair of tuples to determine whether there is a
match or not; MM-based TCUDB, on the other hand, only
computes non-zero values in sparse matrices. Therefore, the
selectivity determines the actual amount of computation. The
data skewness principally determines the balance of partitions
in hash join, but many recent implementations, including PW,

0.1 0.3 0.5 0.7 0.9
ratio

212

213

214

215

216

217

218

219

220

ca
rd

in
al

ity
 ||

R|
|

0.89 1 1.1 1.2 1.3

1.1 1.3 1.7 1.4 1.6

1.4 1.5 1.7 1.8 1.6

1.4 1.6 1.7 2.1 1.7

1.5 1.5 1.4 1.3 1.2

1.1 1.1 1.1 1 0.92

0.82 0.76 0.68 0.66 0.6

0.64 0.52 0.49 0.4 0.37

0.5 0.34 0.32 0.31 0.39

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

sp
ee

du
p

Fig. 3: Speedup heatmap regarding |R| and |S|

0.0 0.2 0.4 0.6 0.8 1.0
z

0.1

0.3

0.5

0.7

0.9

se
l

1.79 1.74 1.78 1.55 1.54 1.54

1.66 1.79 1.65 1.65 1.69 1.34

1.82 1.70 1.43 1.52 1.68 1.82

1.31 1.42 1.78 1.47 1.75 1.45

1.58 1.63 1.90 1.48 1.82 1.53

1.4

1.5

1.6

1.7

1.8

tim
e

(m
s)

(a) PW

0.0 0.2 0.4 0.6 0.8 1.0
z

0.1

0.3

0.5

0.7

0.9

se
l

3.05 3.09 3.03 3.24 3.21 3.19

4.06 4.06 4.03 4.02 3.92 4.07

4.71 4.67 4.63 4.55 4.44 4.35

4.74 4.69 4.63 4.55 4.44 4.38

4.70 4.68 4.65 4.57 4.46 4.36

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

tim
e

(m
s)

(b) TCUDB

Fig. 4: Execution time regarding selectivity and skewness

perform optimizations to mitigate the negative implication
of unbalanced partitions. As a result, we can not identify a
significant relationship between skewness and execution time.
TCUDB, on the other hand, is more sensitive to data skewness
because high skewness means values in matrices are spread in
multiple clusters. The spMM kernel can skip regions with zero
values, further reducing the workload. However, this effect is
not as significant as selectivity.

2) Memory footprint and I/O: Through the analysis of
execution time, we discover that skewness and selectivity have
a remarkable impact on the performance of TCUDB. Because
skewness and selectivity serve as the primary determinant of
data layout and memory I/O in the spMM kernel, we analyze
the differences between PW and TCUDB regarding memory
I/O to pinpoint the root cause of performance differences.

Q3 : How does the cardinality affect memory usage and I/O
of TCUDB and PW?

Memory footprint. Due to the GPU memory limitation, the
peak memory usage of an in-memory algorithm determines
whether the algorithm can be executed successfully. Fig. 5
shows the peak memory footprint of PW and TCUDB. The
chained-buckets data structure of PW requires pre-allocated
memory space, so PW has a high memory footprint, even
with low cardinality. Sizes of sparse matrices in TCUDB are
related to cardinality and sparsity, so we can see the increasing
trend as cardinality increases. The 2-dimensional matrix rep-
resentation of relations has higher storage complexity. Due to
the non-partitionable data structures in TCUDB, the memory
usage exceeds the device capacity when |R| > 220.

Memory I/O. Similar to the memory footprint, the total mem-
ory I/O of TCUDB in Fig. 6 also increases with cardinality,
resulting to greater execution times, due to the increasing
number of memory operations. Notably, PW still performs
better with more memory I/O when |R| > 217. Apart from
the gap of algorithmic complexity, concurrent data transfer
between the host and GPU also helps PW gain superior per-
formance. Concurrent data transfer can move the data required
for build and probe in small segments, enabling overlapping
computation and data transfer and reducing the memory stall.
In contrast, the spMM kernel in TCUDB needs to wait for

212 213 214 215 216 217 218 219 220

cardinality ||R||

10 1

100

M
em

or
y

Us
ag

e
Ra

tio

Implementations
PW
TCUDB

Fig. 5: Peak memory usage of PW and TCUDB

212 213 214 215 216 217 218 219 220

cardinality ||R||

100

101

102

M
em

or
y

Us
ag

e
Ra

tio

Implementations
PW
TCUDB

Fig. 6: Memory I/O measured in MB

212 213 214 215 216 217 218 219 220

cardinality ||R||

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tim
e

(m
s)

Data preparation
CUSPARSE kernel

Fig. 7: Performance breakdown of TCUDB. Data preparation
means data transformation from relations to sparse matrices.

sparse matrices to be fully built and filled (line 1-17 in Alg. 1).
In Fig. 7 we can observe that the memory preparation time
dominates the total execution time. Lack of data-computation
concurrency results in the inferior performance of TCUDB
when joining large relations.

Q4 : How do selectivity and skewness affect memory I/O?

In the execution time experiments (Fig. 4b), TCUDB per-
forms better with low selectivity. We now investigate the
relationship between memory I/O and selectivity-skewness
combinations in Fig. 8. The memory I/O is less for small

0.0 0.2 0.4 0.6 0.8 1.0
z

0.1

0.3

0.5

0.7

0.9

se
l

218.5 216.1 213.9 206.0 196.7 185.5

292.6 286.6 277.3 250.0 226.0 212.7

336.3 335.4 327.5 308.7 269.8 233.2

336.3 336.6 324.5 304.5 270.4 231.9

336.2 333.7 324.5 306.0 269.7 230.4

200

220

240

260

280

300

320

M
em

or
y

I/O
 (M

B)

Fig. 8: Mem. I/O of TCUDB varying selectivity & skewness.

selectivities sel ∈ [0.1, 0.3]. Together with Fig. 4b, we
conclude that, for TCUDB, low selectivity and high skewness
indicates less computation and memory I/O, implying high
speedup compared with the SOTA GPU hash join.

Q5 : How do TCU_MM, TQP and cuDF perform, given
varying values of |R|?

Python-based implementations. Next, we compare the per-
formance of python-compatible GPU-based join implementa-
tions, i.e., TCU_MM, TQP, and cuDF. TQP uses the same
PyTorch primitives as TCU_MM, while cuDF uses thrust, a
general-purpose parallel primitives library. Pytroch primitives
are designed for parallel algebraic computation, lacking ef-
fective support for iterative computation. As a result, TQP
combines multiple primitives to implement iterative opera-
tions, such as scan, filter, etc. Such an indirect method involves
significant overhead compared to native implementations.

2000

4000

6000
Implementations

TCU_MM
TQP
cuDF

20

40

60

216 217 218 219

cardinality

0

5

10

15

tim
e

(m
s)

Fig. 9: Average execution time of Python implementations.

Observation & Analysis. In Fig. 9, TQP is substantially
slower than the other two methods. Pytorch primitives can
efficiently compute sparse matrices in TCU_MM. The high
algorithmic complexity and memory stall of TCU_MM are
even higher in their Python counterpart, due to an addi-
tional translation layer between Python and CUDA, making

TCU_MM inferior to the well-optimized hash join in cuDF.

C. Evaluation on real-world data

In order to validate the performance of TCUDB in practical
scenarios, we use a number of relations (Table II) in IMDB
dataset to evaluate the execution time of PW and TCUDB.
Since TCUDB currently does not support some data types,
such as text or date, we only examine categorical attributes.

Q6 : How does TCUDB perform on real-world datasets?

Observation & Analysis. In Fig. 10, TCUDB performs better
in company_year dataset, whereas it exhibits performance
degradation with cast_movie data. The company_year data has
low total cardinality and selectivity within [0.1, 0.3]. Although
the cast_movie contains approximately equivalent |R|, the
large ratio makes the total cardinality fall out of the suitable
range for TCUDB. Combined with the execution time analysis
of the previous section, TCUDB presents satisfactory speedup
in synthetic data with similar selectivity and skewness. These
observations validate our analysis that TCUDB performs faster
with low selectivity and high skewness. Thus, we reach a
preliminary discovery. That is, to some extent, MM-join has
been proven to be a good choice of join implementation for
practical data science tasks when low selectivity is low and
skewness is high.

cast_movie company_year
dataset

0

1

2

3

4

5

6

tim
e

(m
s)

implementations
PW
TCUDB

Fig. 10: Execution time tested on real-world datasets.

IV. CONCLUSION

In this work, we explored the applicability of MM-join
through an extensive performance comparison between MM-
join and multiple representative GPU hash join implemen-
tations. We have used synthetic data to test the impact of
selectivity and skewness in both compute performance and
memory I/O. We drew the following conclusions from our
experiments on the given hardware:

• PW exhibits substantial scalability and stability over
various data characteristics.

• MM-join presents superior performance in real-world
data processing tasks with low cardinality (|R| < 218)

and selectivity (sel < 0.3) but is not the best choice for
large data.

• The 2-dimensional matrix representation of relations has
higher storage complexity, and the synchronized exe-
cution of data movement and computation introduces
considerable memory stalls, causing performance degra-
dation at high cardinalities.

Future research. Compared to the well-studied GPU hash
join, MM-Join calls for further research. For example, its
unsatisfactory performance due to sequential data movement
can be improved through MM-Join over multiple sliced inputs,
which resembles partitions in hash joins. By implementing
a block-wise spMM kernel [24], it is possible to overlap
the data movement and computations over disjoint blocks of
matrices. Additionally, the intersection of machine learning
and databases can benefit from global optimizations across
both data processing and ML models through a unified math-
ematical representation.

REFERENCES

[1] Rasmus Resen Amossen and Rasmus Pagh. “Faster Join-Projects and
Sparse Matrix Multiplications”. In: ICDT. 2009, pp. 121–126.

[2] Cagri Balkesen et al. “Main-memory hash joins on multi-core CPUs:
Tuning to the underlying hardware”. In: ICDE. 2013, pp. 362–373.

[3] Christos Bellas. “Advanced Joins on GPUs”. In: PhD Thesis (2022).
[4] Piotr Bialas and Adam Strzelecki. “Benchmarking the cost of thread

divergence in CUDA”. In: PPAM. 2016, pp. 570–579.
[5] Matthias Boehm et al. “SystemDS: A Declarative Machine Learning

System for the End-to-End Data Science Lifecycle”. In: (2020).
[6] Paul G Brown. “Overview of SciDB: large scale array storage, pro-

cessing and analysis”. In: SIGMOD. 2010, pp. 963–968.
[7] Shaleen Deep, Xiao Hu, and Paraschos Koutris. “Fast Join Project

Query Evaluation Using Matrix Multiplication”. In: SIGMOD. 2020,
pp. 1213–1223.

[8] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. “Understand-
ing the efficiency of GPU algorithms for matrix-matrix multiplication”.
In: SIGGRAPH/EUROGRAPHICS. 2004, pp. 133–137.

[9] Bingsheng He et al. “Relational joins on graphics processors”. In:
SIGMOD. 2008, pp. 511–524.

[10] Dong He et al. “Query processing on tensor computation runtimes”.
In: VLDB Endowment. Vol. 15. 11. 2022, pp. 2811–2825.

[11] Yu-Ching Hu, Yuliang Li Li, and Hung-Wei Tseng. “TCUDB: Accel-
erating Database with Tensor Processors”. In: SIGMOD. 2022.

[12] Zichun Huang and Shimin Chen. “Density-Optimized Intersection-Free
Mapping and Matrix Multiplication for Join-Project Operations”. In:
vol. 15. 10. VLDB Endowment, 2022, pp. 2244–2256.

[13] IMDB datasets. URL: https://www.imdb.com/interfaces/.
[14] Zhuohang Lai et al. “Accelerating multi-way joins on the GPU”. In:

VLDB Endowment. Vol. 31. 3. 2022, pp. 529–553.
[15] Stefano Markidis et al. “NVIDIA Tensor Core Programmability, Per-

formance & Precision”. In: IPDPS. May 2018.
[16] Nvidia. Nvidia A100 Architecture Whitepaper. URL: https : / / www.

nvidia .com/content /PDF/nvidia - ampere- ga- 102- gpu- architecture-
whitepaper-v2.pdf.

[17] Adam Paszke et al. “Pytorch: An imperative style, high-performance
deep learning library”. In: NeurIPS. Vol. 32. 2019.

[18] Ran Rui and Yi-Cheng Tu. “Fast equi-join algorithms on GPUs: Design
and implementation”. In: SSDBM. 2017, pp. 1–12.

[19] Stefan Schuh, Xiao Chen, and Jens Dittrich. “An experimental compar-
ison of thirteen relational equi-joins in main memory”. In: SIGMOD.
2016, pp. 1961–1976.

[20] Panagiotis Sioulas et al. “Hardware-conscious hash-joins on gpus”. In:
ICDE. 2019, pp. 698–709.

[21] Da Yan, Wei Wang, and Xiaowen Chu. “Demystifying tensor cores to
optimize half-precision matrix multiply”. In: IPDPS. 2020, pp. 634–
643.

[22] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. “The Yin and Yang
of processing data warehousing queries on GPU devices”. In: VLDB
Endowment 6.10 (2013), pp. 817–828.

[23] Raphael Yuster and Uri Zwick. “Fast sparse matrix multiplication”. In:
TALG. 2005, pp. 2–13.

[24] Orestis Zachariadis et al. “Accelerating sparse matrix–matrix mul-
tiplication with GPU Tensor Cores”. In: Computers & Electrical
Engineering 88 (2020), p. 106848.

