
Adaptive Query Compilation with
Processing-in-Memory

Alexander Baumstark
TU Ilmenau, Germany

alexander.baumstark@tu-ilmenau.de

Muhammad Attahir Jibril
TU Ilmenau, Germany

muhammad-attahir.jibril@tu-ilmenau.de

Kai-Uwe Sattler
TU Ilmenau, Germany

kus@tu-ilmenau.de

Abstract—The challenge of today’s DBMS is to integrate
modern hardware properly in order to provide efficiency and
performance. While emerging technologies like Processing-in-
Memory (PIM) reduce the bottleneck when accessing memory by
offloading computation, DBMSs must adapt to the new character-
istics and the provided processing models in order to make use of
it efficiently. The Single Program Multiple Data (SPMD) models
require a special precompiled program for PIM-enabled chips in
the UPMEM architecture. Integrating this model into the query
processing of a DBMS can improve the overall performance by
efficiently exploiting the underlying characteristic of high parallel
execution directly on memory. To address this, we propose an
approach to integrate this programming model directly into the
query processing by leveraging adaptive query compilation. The
experiment results show an improvement in the execution times
compared to the execution on non-PIM hardware.

Index Terms—Processing in Memory, UPMEM, Query Com-
pilation, Graph Database

I. INTRODUCTION

Most modern in-memory databases aim to provide high
performance with low latency and high throughput. Due to the
different development processes between CPU and main mem-
ory, memory-bound operations in DBMS become increasingly
a problem due to a bottleneck (or memory wall), which affects
the possible performance of modern systems. Processing-in-
Memory (PIM) is a new opportunity that solves this problem
by moving computation directly to memory. Through the
company around UPMEM, there is already real hardware that
provides PIM-enabled DIMMs commercially [1]. However,
UPMEM introduced hardware with new characteristics using
a special programming model for the hardware. In order to use
this hardware for query execution in databases efficiently, the
characteristics and programming models of the hardware must
be adapted into query processing. The UPMEM architecture
follows the Single Program Multiple Data Model [2], which
requires a specially compiled program for the PIM-enabled
chips to execute. This code is compiled ahead of time (AOT),
which means that only static query parts can be executed
with it. Consequently, operators must be precompiled. By in-
tegrating this compilation process this problem can be solved,
which however again leads to additional compilation times.
Adaptive query compilation is a solution to this problem. By
providing multiple execution modes for queries, the query
can be interpreted during compilation and the efficient code
can be called once compilation is complete. Furthermore, this

approach allows the execution of different filter expressions
with the PIM technology directly in the query pipeline of
databases without the need to provide previously compiled
programs. With this work, we show an approach to integrate
new hardware with its own characteristics into an existing
adaptive query engine with low effort.

The contributions of this work are as follows:
• We show an approach to generating efficient machine

code from queries for the execution using the PIM
technology.

• We show an approach to integrate the PIM compilation
approach of the UPMEM architecture into query process-
ing.

• We introduce a method to adaptively switch between
query execution modes in order to hide the compilation
times of PIM programs.

• We evaluate our approach against the execution of non-
PIM optimized execution.

We built this work around the Poseidon Graph Database1,
an HTAP graph database implemented to exploit the memory
hierarchy of modern systems. Initially, Poseidon was explored
for exploiting persistent memory. However, the approaches
developed for this purpose can also be efficiently transferred
for use as an in-memory database in DRAM.

II. RELATED WORK

a) Code Compilation: Query compilation is a widely
known and researched technique for improving query perfor-
mance through compilation. In general, the approach in query
compilation can be divided into template-based and IR-based
compilation. The template-based approach supplies query tem-
plates with the query arguments provided by the user. Then,
with the use of a high-level compiler, e.g., GCC or clang,
it transforms them into machine code. An example of this
approach is Hekaton, a database engine for Microsoft’s SQL
Server using this technique [3]. It transforms algebra plans
through several optimization steps into high-level C code.
Due to the high compilation times of high-level compilers,
the performance of this approach is low. IR-based approaches
use an intermediate representation (IR) for machine-code
generation. [4] provides a query compiler that is based on
the LLVM framework. Based on this work, [5] proposed an

1https://dbgit.prakinf.tu-ilmenau.de/code/poseidon core/-/tree/upmem

approach to adaptively switch between execution modes to
avoid the waiting time for compilation. An interpreter is used
to execute the query while the compilation runs. Especially for
short-running queries, the execution time can be improved,
since their compilation time can be higher than the actual
processing [6]. Other approaches provide their own IR for
the generation of machine code. [7] showed an approach that
estimates value lifetimes before code generation. The Voodoo
IR is a declarative algebra, that provides a set of vectorization
instructions to generate OpenCL code [8].

Integrating new hardware is also a challenging aspect when
writing a query compiler as they often have other architectural
characteristics or programming models than the host. The
research ranges from integrating GPUs to FPGAs [9]–[12].

The work of [9] provides an approach to integrate FPGAs
into a database engine without further changes in the data
layout. The evaluation shows an enormous saving when exe-
cuting queries using the FPGA. [10] demonstrated an approach
to compiler analytical queries into FPGA programs in order
to execute text analytics. For GPU-based query processing,
the work of [11] provided a strategy to transform multiple
operations of a query into a single GPU kernel. The authors
of r3d3 provided a hybrid AOT and JIT compiled approach to
compile queries into a GPU program [12]. Further, the work
of [13] integrated GPUs into the query engine. The evaluation
of this query engine showed that it can outperform other GPU-
based query engines.

b) Processing-in-Memory: PIM has been a well-known
technology for improving the CPU-memory bottleneck for sev-
eral decades. On the technical side, there have been a number
of concepts that have enabled PIM since the 1990s [14], [14],
[15]. However, the high cost and lack of industrial support
for this concept prevented the commercial production of real
PIM hardware. Nonetheless, research was conducted based on
prototypes. Since PIM Technology follows a similar approach
to GPU Processing, the applicability of the design space of
GPU-accelerated architectures to PIM was investigated in the
work of [16]. The authors of [17] published a mechanism
to reduce the data exchange between CPU and PIM cores
by means of caching, referred to as LazyPIM. The company
around UPMEM published with their architecture the first
real hardware which enables PIM [1]. There are already a
number of works concerning this architecture investigating its
characteristics and applicability. The work of Gomez-Luna et.
al under the architecture for its limitations and performance
as well as energy consumption [18]. The result of the work
shows that the UPMEM system achieves particularly good
performance as long as the individual components (DPUs) do
not require communication (DPU-to-DPU).

However, to our knowledge, there exists no DBMS that
exploits adaptive query compilation with PIM to enhance
query processing.

III. BACKGROUND

Before considering the approach for the adaptive compi-
lation of PIM programs, this Section is used to introduce

the basics of the Poseidon Graph Database and the UPMEM
architecture which are the used systems for which the proposed
approach is implemented. Nevertheless, the key techniques and
algorithms can be applied to any other DBMS.

A. Graph Database Poseidon

As mentioned above, Poseidon is formally optimized to ex-
ploit the characteristics of PMem. However, the optimizations
for PMem can also be transferred to DRAM. Therefore, we
use Poseidon as the system for the implementation of our
approach.

a) Data Model: The underlying data model of the Po-
seidon Graph Database is the Labeled-Property Graph. Within
this model, the data is organized as a graph consisting of nodes
that are connected with relationships. Further, labels can be
directly assigned to the nodes and relationships. Formally, we
define the model for the Poseidon Graph Database as follows:

Theorem 1. A graph G consists of nodes N and directed
relationships R ∈ N × N , denoted by G = (N,R). A node
n ∈ N is identified by a unique identifier id : N −→ ID.
From the set of labels L, a label is assigned to each node and
relationship using the label function l : (N∪R) −→ L. Further,
a property is a key-value pair (k, v) ∈ P . The properties P
are P = K ×D, where K is the set of property names and
D is the property values. Properties can be assigned using
p : (N ∪R) −→ P(P), using the powerset P.

Using this model we are able to create, store, and process
arbitrary graphs.

b) Storage: In order to store arbitrary graphs efficiently
we store the nodes, relationships, and their properties in
separate tables. As the underlying data structure for the storage
of the tables, we use the same data structure that is referred to
as a chunked vector [19]. A chunked vector is fundamentally
a linked list of fixed-size arrays (chunks) where available slots
are indicated using a bitset. A new record will be inserted into
the first available space according to the position of the first
unset bit of the bitset. Whenever a chunk is full, a new chunk
will be allocated and linked with the last chunk in the vector.
The node, relationship, and property records have always a
fixed size. This is done by using a dictionary for variable-
sized fields, like strings. The appropriate dictionary code is
then placed in the field of the record. The connection between
nodes is done via relationships. Each node record maintains
two offsets, which indicate the first ingoing and outgoing
relationship of the node. Further, the relationship records
maintain the source and destination node id and as a field, as
well as the next relationship of the node records. This enables
traversing the graph by processing through the appropriate
relationship lists of the nodes. A similar approach is used for
the properties: each node maintains the first property item id
as a field. Belonging properties items are linked with their
identifiers.

c) Query Processing: For the processing of queries, the
Poseidon Graph Database provides operators that are based on
graph algebra. Graph algebra extends the relational algebra by

chunked	vector

Scan

Filter

chunked	vector

Compiled
Query

Fig. 1. Query Pipeline of the Poseidon Graph Database

more operators in order to traverse the underlying graph data.
For Poseidon, we implemented three additional operators in
order to traverse the graph:

• NodeScan: scans the nodes table and filters them by a
given label

• ForeachRelationship: iterates through the rela-
tionship list of a node by a given direction (to, from)

• Expand: extracts the source or destination node of a
relationship

Further, the query operators in Poseidon are organized in a
push-based pipeline, according to their position in the query.
Figure 1 shows the query pipeline of Poseidon using the push-
based approach. With push-based processing, the control flow
of the operators is the same as the data flow, which is beneficial
to generate efficient machine code. The results of an operator
are pushed to the next operator in the pipeline until a pipeline
breaker is reached. A pipeline breaker can be a materializing
operator that writes data to the storage or a collecting operator
to return the results to the user. Additionally, we make use of
Morsel-driven parallelism for the execution of queries [20].
The chunks of the tables (Morsels) are assigned to a task and
pushed into a task pool. The available threads execute the
query by pulling a task from the pool and executing the query
on the assigned chunks of the task until no task is left.

The Poseidon Graph Database provides three modes for the
execution of graph queries:

• Interpretation
• Compilation
• Adaptive Query Compilation

The interpretation mode uses AOT-compiled operators to exe-
cute a query. For each operator, the query engine executes the
appropriate compiled operator code. The compilation modes
transform the graph query into LLVM IR and compile it into
an optimized machine code using the LLVM framework. The
adaptive query compilation approach combines both previous
approaches [21]. First, it starts the query execution in the
interpretation mode and compiles the query in a background
thread. As soon as the compilation is complete, it switches to
compiled machine code.

B. Processing-in-Memory

PIM is a technology to solve the memory-wall phenomenon
of today’s system architectures. This problem describes the
performance gap between the CPU and the memory over
time. While the CPU performance of modern CPUs increased
over time, memory performance in terms of bandwidth and
latency stabilized. The effect of this is that modern CPUs
wait most of their execution time for memory transfer. With
PIM, the processing of data is directly performed on the
memory, enabling a higher bandwidth, lower latency, and
less energy consumption. For a long time, no commercialized
implementation of PIM-enabled hardware existed. However,
this has changed with the release of PIM-enabled chips by
UPMEM.

a) UPMEM Architecture: The UPMEM architecture is
the first real PIM-enabled hardware released. The core of
this architecture is built by UPMEM DIMMs which are
usual DDR4 DRAM DIMMs with a frequency of 2400 MHz
and equipped with PIM-enabled chips. Further, the chips are
organized into ranks, where each DIMM comprises up to
two ranks in the current release. Each rank can hold up to
8 PIM-enabled chips. Then, a PIM-enabled chip holds up to 8
DRAM Processing Units (DPUs), where each DPU has access
to its own Main RAM (MRAM), Instruction RAM (IRAM),
and Working RAM (WRAM). These different memories have
different restrictions in terms of accessibility and size. The
MRAM has a size of 64 MB. It is accessible by the DPU itself
and the host. The purpose of this memory is to communicate
with the host, by host-to-DPU and DPU-to-host data transfer.
The IRAM has a size of 24 KB and stores the actual program
with the instructions of the DPU, while the WRAM with a
size of 64 KB is meant to store the stack and heap data while
executing the DPU program. DPUs have only access to their
own memories. Therefore, there is no direct communication
between the DPUs possible.

The DPU itself is a 32-bit RISC core with a maximum
frequency of 400 MHz. It supports multithreading with up
to 24 hardware threads. As these threads share the same
memory, synchronization mechanisms like mutexes, barriers,
or semaphores are required when accessing critical sections.

b) Programming Model: The programming model for
the UPMEM DPUs follows the Singe Program Multiple Data
model, which implies that every DPU is executed with the
same single program but with different data. DPU environment
allocation, data preparation, and execution are managed by
the host application. For development, the UPMEM SDK
provides two different libraries, one for the host, and the other
for the DPU program. Both are for development using C or
C++. The library for the DPU program comprises the usual C
standard library adapted to the DPU architecture. Further, it
contains synchronization primitives like mutexes, barriers, and
semaphores. The number of used threads, also referred to as
tasklets, must be defined before the compilation of the DPU
program. For memory management of the DPU programs, the
programmer must define the placement of memory regions

explicitly, i.e., placement of the memory region in MRAM or
WRAM.

#include <mram . h>
mram noin i t struct mram chunk mrc [2 4] ;
mram noin i t u i n t 6 4 t f o u n d r e s u l t s [2 4] ;

int main () {
int t a s k l e t i d = me () ;
f o u n d r e s u l t s [t a s k l e t i d] = 0 ;

for (int i = 0 ; i < 1024 ; i ++) {
if (mrc [t a s k l e t i d] . r e c o r d [i] . i d = 42)

f o u n d r e s u l t s [t a s k l e t i d] + + ;
}

}

The Listing above shows a simplified DPU program for
the scan of a table from the Poseidon Graph Database. The
developer has to specify the memory regions in MRAM using
the __mram or __mram_noinit specifier. The latter does
not provide an initialization with the effect of a smaller binary
size of the program. The data from the host is placed inside the
specified MRAM region mrc. The program itself is executed
with all available 24 threads. A thread can retrieve its id using
the me() function provided by the runtime library. In order
to improve the concurrent execution each thread works on
its own memory region when writing the results. Therefore,
no further synchronization is necessary. The results written
in the found_results variable can be retrieved by the
host using a DPU-to-host data transfer. This program can be
executed on all, specific ranks or set of DPUs by the host but
has to be pre-compiled using the special compiler for DPU
programs given by the UPMEM SDK. The workflow of the
host for the execution of PIM programs with UPMEM DPUs
can be summarized into the following steps: 1) DPU (ranks)
and program allocation, 2) Host-to-DPU(s) buffer population,
data transfer, 3) Execution of DPU program, 4) DPU(s)-to-host
data transfer.

The host has to specify the number of DPUs for the future
execution of the DPU program. Then, the host has to load the
pre-compiled DPU binary using the dpu_load instructions.
The data transfer between the host and DPUs access always
the MRAM which requires an 8-byte alignment of the data.
Further, there are several ways to transfer data. The first way
is to transfer the same buffer from the host to the DPUs.
This requires executing the dpu_copy_to instruction from
the host runtime library. In some cases, this instruction is
not sufficient, for example, when each DPU should have
a different chunk of the table in order to process data in
parallel. In this case, there exist the dpu_prepare_xfer
instruction which assigns a buffer to one or multiple DPUs.
The data is then transferred in parallel by executing the
dpu_push_xfer instruction. The execution of the DPU
program can be triggered by executing the dpu_launch
instruction. It then starts the previously loaded DPU binary
on all allocated DPUs. Additionally, it is possible to execute
the data transfer and launch asynchronously which gives the
control back to the host. This can be beneficial to process

other steps, i.e., data preparation for the next iteration. Using
the dpu_sync method waits for the completion of all DPUs.

c) Query Processing with PIM: The Poseidon Graph
Database supports the execution of AOT-compiled PIM pro-
grams for the execution of queries. For this, the whole graph
data (the tables) are transferred on startup on the DPUs. In
order to provide a high level of parallelism with all available
DPUs and threads, the chunks of the tables are distributed
across all available DPUs. For the AOT-compiled execution,
the database provides for each operator an own DPU program.
To process a complete query, each program has to be executed
in the order according to the query plan. The state of the
DPUs is preserved after each execution of the DPU programs,
requiring only the results and arguments to be (re-)initialized.
If required data is not present in the DPUs because it would
not be transferred due to size, it is transferred before the
corresponding operator is executed. After execution, the results
can be transferred via a DPU-to-host data transfer and further
processed by the host. This allows parallel execution of a scan
operator with all DPUs and threads as well as the execution
of further queries like filters or graph traversals. However,
this procedure requires, in addition to the database, an AOT-
compiled DPU program for each operator. Furthermore, not
all requests from the user can be executed with this proce-
dure. Therefore, a provision of an adaptive query compilation
approach is advantageous.

IV. ADAPTIVE CODE COMPILATION FOR PIM

Looking at the execution of programs using UPMEM tech-
nology, an already compiled program must be available for
execution on DPUs. In many cases, especially when executing
UDFs, it is not possible to provide these programs because
a special program is required by the user. The provision
of a generic program that answers every possible request
configured by parameters is inherently difficult. This Section
describes an approach that integrates the JIT compilation of
DPU programs into the query pipeline. However, the compi-
lation of queries is often accompanied by a problem regarding
the overall performance since the compilation of small queries
can be larger than the actual execution time. Therefore, we
show an adaptive approach that uses the usual execution mode
when compiling the DPU program in the background and
switches to the mode after it.

A. Execution Modes

The Poseidon Graph Database already provides a set of exe-
cution modes in order to answer graph queries: interpretation,
compilation, and adaptive compilation. The latter mode hides
the compilation times of queries by executing the query in the
background while processing the query in the interpretation
mode. The same approach can be applied to the compilation
of PIM programs by two further modes:

• PIM mode
• Adaptive PIM mode
Figure 2 shows the PIM mode query pipeline and compi-

lation. The PIM mode compiles the appropriate part of the

chunked	vector

Scan

Filter PIM
ProgramPIM	compile

chunked	vector

Compiled
Query

receive

transfer

Fig. 2. Query Pipeline of the Poseidon Graph Database

query into a PIM program using the built-in PIM compiler
of the query compiler in Poseidon. Currently, the built-in
PIM program compiler is only able to transform Scan,
Filter, and ForeachRelationship operations into a
PIM program. An extension of the compiler to support further
operators is planned for future work. The output of the PIM
compiler is placed in a memory buffer that will be executed
by the host using the provided functions of the UPMEM SDK.

As already mentioned, the compilation of PIM programs
is accompanied by further compilation times. Waiting for the
completion of the compilation would slow down the execution
times enormously. The introduces Adaptive PIM mode is an
approach to hide the compilation times of the PIM program.
To do this, this execution mode extracts again the relevant
parts from the query for the PIM program and starts the
compilation in a background thread. While the thread compiles
the PIM program in the background, the query is executed in
the (non-PIM) adaptive compilation mode, which again starts
a thread in the background to compile the query into optimized
machine code. While compiling, the query is executed using
the interpretation mode.

B. Code Generation

When compiling queries in the Poseidon Graph Database
we have to consider two different compilation processes: the
usual compilation process to generate X86 machine code from
a query, and the compilation process to generate a program for
the UPMEM DPUs. The LLVM compilation framework can be
used for both purposes since the JIT compiler of Poseidon and
the UPMEM program compiler are based on it. This makes
it convenient to integrate both compilation processes into a
single one. Further, LLVM provides a set of optimization
algorithms for the built-in IR that can be used to optimize
the code for the host and the UPMEM DIMMs.

a) Non-PIM Code: The workflow of the UPMEM archi-
tecture must be integrated into the query pipeline of Poseidon,
in order to communicate with the UPMEM DPUs efficiently.
As mentioned already, the workflow of a DPU program con-
sists of allocating the DPU, host-to-DPU data transfer, DPU
program execution, and DPU-to-host data transfer to retrieve
the results. However, the static part like the DPU allocation and

the host-to-DPU transfer of the graph can be placed outside
the query pipeline, since it is more efficient to execute this part
before query execution. For example, when providing a scan
operator using PIM technology, the actual data must be copied
to the DPUs beforehand. However, there exist cases where the
data must be copied during query processing, for example,
copying query arguments like IDs or predicates to the DPUs
for selection, or when obtaining the processed results from
the DPUs. Therefore, we require three additional operators
for host-to-DPU and DPU-to-host data transfer and the actual
launch of the DPU program:

• TransferPIM: transfers data from the host to all or indi-
vidual DPUs

• ReceivePIM: obtains the results from all or a specific
DPUs

• LaunchPIM: executes the DPU program
Using these three operators in the query pipeline of the

Poseidon graph database is sufficient to execute queries using
the PIM technology.

b) PIM Code: Generating LLVM IR code for a PIM
program is similar to the generation of IR code for the usual
architectures. We make again use of the LLVM framework on
which the DPU runtime library is based. Again we abstract the
processing into several operators. For the current implemen-
tation, we are only supporting two additional operators which
make use of PIM using the UPMEM DIMMs: NodeScanDPU
and FilterDPU.

Both operators require the data to be transferred before their
execution, i.e., the table chunks and the appropriate arguments
like labels and filter predicates. The NodeScanDPU operator
iterates over the given set of chunks containing the nodes and
filters the nodes by the given label. Further, it writes the results
in a bit vector according to the position of the found nodes
in the chunk. The host application obtains the found nodes
by accessing their position according to the flipped positions
in the bit vector. FilterDPU filters the properties of a node
by a given predicate. The properties have to be transferred to
the DPUs beforehand. The arguments for this operator are the
id of the node, the label code for the property, and the value
for comparison. A boolean result is written at the end of the
execution.

For both operators, we generate LLVM IR similar to the
appropriate operators for the non-PIM mode. Additionally, we
optimize the code using the same optimization as used for the
-O3 optimization.

C. Adaptive Switching

Whenever a DBMS tries to compile queries into efficient
code one problem is the compilation time. Especially when
compiling short running queries the actual compilation time
may be much higher than the processing time of the query
which decreases the resulting performance of query process-
ing. We compile the query for two different platforms: the host
and the DPUs. As the compilation for the host and DPUs needs
time, we start the processing using the interpretation mode. In
the meantime, the query will be compiled for the different

platforms in a background thread. As soon as the compilation
is complete, the processing switches to the compiled machine
code for the host. For the actual switching, we make use of
the Morsel-driven parallelism of the query engine of Poseidon.
Each chunk will be assigned a task which will be pushed into
a task pool. Each task contains a static function pointer to
the function that executes the query. Initially, it is set to the
interpreter that triggers the query execution in the interpreta-
tion mode using AOT-compiled code. When switching modes,
the function pointer will be set to the new compiled function,
executing the compiled query code. The switch takes effect
when the next task is pulled from the task pool.

V. EVALUATION

A. System & Workload

The system used for the following benchmarks runs with
two Intel Xeon Silver 4215R with a total of 16 cores with
2 threads each. A total of 32 threads can be executed on
the system. Furthermore, the system has 512 GB of DRAM,
which is made up of 8 x 64 GB DIMMs. In terms of PIM,
the system has 4 UPMEM DIMMs with 16 GB each. Each
UPMEM DIMM has 2 ranks with up to 64 DPUs each. The
total number of DPUs is 510, divided into 8 ranks. The clock
rates of the DPUs are between 200-400 MHz. The system runs
under Ubuntu 20.04.1 with Linux kernel 5.4.0. The code of the
host and DPU program was compiled with Clang at version
12 and full optimization at -O3.

For the workload, we use the Social Network Benchmark
(SNB) dataset from the Linked Data Benchmark Council
(LDBC) and the Interactive Short Read queries for the follow-
ing benchmarks. This is an applicable benchmark to evaluate
the performance of this approach in a graph DBMS. The used
scale factor of the dataset is 1. We further restrict ourselves to
the first three Interactive Short Read queries, as the provided
approach is only able to generate code for such queries. In
the future, we plan to extend our system to support all the
provided queries. Nevertheless, these queries are suitable to
show the efficiency of the provided approach as they cover
the code generation for the basic graph query operators.

B. Benchmarks

In the following benchmarks, we compare the PIM and
Adaptive PIM execution modes against the baseline which
does not use the PIM technology.

1) Compilation Time: Figure 3 shows the compilation times
for the queries Q1-Q3 for the host and the appropriate part of
the queries for the DPUs. The benchmark shows directly the
significant difference between the two compilation processes.
While compiling the whole query into the target X86 machine
code takes several msecs, compiling the DPU program is done
in less than a millisecond. The reason for this is the small size
of the DPU program. The DPU program consists of only one
operator, the actual node scan and filtering by the label, and
therefore, of only a few instructions. The small complexity of
such programs results in fast compilation.

Q1 Q2 Q3
query

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

ti
m

e
(m

se
cs

)

Host Compilation DPU Compilation

Fig. 3. Comparison of Compilation between Host and PIM Code.

Q1 Q2 Q3
query

0

200

400

600

800

ti
m

e
(m

se
cs

)

Baseline JIT Baseline Adaptive PIM Adaptive

Fig. 4. Execution time of the queries in different execution modes.

2) Adaptive PIM Mode: Figure 4 shows the execution times
of the queries Q1-Q3, executed in different execution modes.
The Baseline JIT is the JIT compilation mode, where the
query processing is waiting for the compilation process to be
complete. Baseline Adaptive shows the execution times for the
adaptive execution mode where the interpretation is started
while compiling the query in the background and switched
after the compilation is complete. PIM adaptive compiles the
query into the two programs and starts in the same way
with the interpretation. The adaptive PIM mode outperforms
the other execution modes. This is due to the high level of
parallelism using the 24 Threads on all 510 DPUs, while the
other modes can only make use of the 32 CPU threads.

VI. CONCLUSION & OUTLOOK

PIM is a modern technology that is expected to improve
the performance of DBMS. However, modern DBMS needs
to adopt the new characteristics and programming models of
this technology to support its full potential of it. This work
has shown an approach to integrate the technology into the
query processing of DBMSs. Further, with adaptive query
compilation for PIM, this work has shown that it is a reliable
technique to enhance the query processing of DBMS and is
suitable to adopt new technologies like PIM into the query

processing. Using this approach can improve the execution of
certain queries.

For future work, as we expect that this approach can
improve the execution times of all types of queries, we plan
to extend the support for more operators and types of queries.
Further, the placement of PIM or non-PIM operators can
improve the query processing and compilation approach.
There can be cases, where the compilation of a PIM program
is not necessary, for example, when the data is not available
or transferred to the DPUs.

Acknowledgements. This work was partially funded by
the German Research Foundation (DFG) in the context
of the project “Hybrid Transactional/Analytical Graph
Processing in Modern Memory Hierarchies (#TAG)” (SA
782/28-2) as part of the priority program “Scalable Data
Management for Future Hardware” (SPP 2037), “Processing-
In-Memory Primitives for Data Management (PIMPMe)“ (SA
782/31) as part of the priority program “Disruptive Memory
Technologies” (SPP 2377), and by the Carl-Zeiss-Stiftung
under the project “Memristive Materials for Neuromorphic
Electronics (MemWerk)”.

REFERENCES

[1] UPMEM, “https://www.upmem.com/,” 2022.
[2] M. J. Flynn, “Some computer organizations and their effectiveness,”

IEEE Transactions on Computers, vol. C-21, no. 9, pp. 948–960, 1972.
[3] C. Freedman, E. Ismert, and P. Larson, “Compilation in the microsoft

SQL server hekaton engine,” IEEE Data Eng. Bull., vol. 37, no. 1, pp.
22–30, 2014.

[4] T. Neumann and V. Leis, “Compiling database queries into machine
code,” IEEE Data Eng. Bull., vol. 37, no. 1, pp. 3–11, 2014.

[5] A. Kohn, V. Leis, and T. Neumann, “Adaptive execution of compiled
queries,” in 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018, 2018, pp. 197–208.

[6] R. Y. Tahboub, G. M. Essertel, and T. Rompf, “How to architect a query
compiler, revisited,” in Proceedings of the 2018 International Confer-
ence on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018. ACM, 2018, pp. 307–322.

[7] H. Funke, J. Mühlig, and J. Teubner, “Efficient generation of machine
code for query compilers,” in 16th International Workshop on Data
Management on New Hardware, DaMoN 2020, Portland, Oregon, USA,
June 15, 2020. ACM, 2020, pp. 6:1–6:7.

[8] H. Pirk, O. R. Moll, M. Zaharia, and S. Madden, “Voodoo - A vector
algebra for portable database performance on modern hardware,” Proc.
VLDB Endow., vol. 9, no. 14, pp. 1707–1718, 2016.

[9] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo,
D. Dillenberger, and S. Asaad, “Database analytics acceleration using
fpgas,” in Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 411–420.
[Online]. Available: https://doi.org/10.1145/2370816.2370874

[10] R. Polig, K. Atasu, H. Giefers, and L. Chiticariu, “Compiling text
analytics queries to fpgas,” in 2014 24th International Conference on
Field Programmable Logic and Applications (FPL), 2014, pp. 1–6.

[11] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner, “Pipelined query
processing in coprocessor environments,” in Proceedings of the 2018
International Conference on Management of Data, ser. SIGMOD ’18.
New York, NY, USA: Association for Computing Machinery, 2018,
p. 1603–1618. [Online]. Available: https://doi.org/10.1145/3183713.
3183734

[12] A. Krolik, C. Verbrugge, and L. Hendren, “r3d3: Optimized query
compilation on gpus,” in 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2021, pp. 277–288.

[13] J. Paul, B. He, S. Lu, and C. T. Lau, “Improving execution efficiency of
just-in-time compilation based query processing on gpus,” Proc. VLDB
Endow., vol. 14, no. 2, p. 202–214, nov 2020. [Online]. Available:
https://doi.org/10.14778/3425879.3425890

[14] D. Patterson, K. Asanovic, A. Brown, R. Fromm, J. Golbus, B. Grib-
stad, K. Keeton, C. Kozyrakis, D. Martin, S. Perissakis, R. Thomas,
N. Treuhaft, and K. Yelick, “Intelligent ram (iram): the industrial
setting, applications, and architectures,” in Proceedings International
Conference on Computer Design VLSI in Computers and Processors,
1997, pp. 2–7.

[15] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss,
J. Granacki, J. Shin, C. Chen, C. W. Kang, I. Kim, and G. Daglikoca,
“The architecture of the diva processing-in-memory chip,” in Proceed-
ings of the 16th International Conference on Supercomputing, ser. ICS
’02. New York, NY, USA: ACM, 2002, p. 14–25.

[16] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: Throughput-oriented programmable process-
ing in memory,” in Proceedings of the 23rd International Symposium
on High-Performance Parallel and Distributed Computing, ser. HPDC
’14. New York, NY, USA: ACM, 2014, p. 85–98.

[17] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh,
K. T. Malladi, H. Zheng, and O. Mutlu, “Lazypim: An efficient cache
coherence mechanism for processing-in-memory,” IEEE Computer Ar-
chitecture Letters, vol. 16, no. 1, pp. 46–50, 2017.

[18] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a new paradigm: Experimental analysis
and characterization of a real processing-in-memory system,” IEEE
Access, vol. 10, pp. 52 565–52 608, 2022.

[19] M. A. Jibril, A. Baumstark, P. Götze, and K.-U. Sattler, “Jit happens:
Transactional graph processing in persistent memory meets just-in-time
compilation,” in 24th Int. Conference on Extending Database Technology
(EDBT) 2021, Nicosia, Cyprus, 2021.

[20] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann, “Morsel-driven par-
allelism: a numa-aware query evaluation framework for the many-core
age,” in International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014. ACM, 2014, pp. 743–
754.

[21] A. Baumstark, M. A. Jibril, and K.-U. Sattler, “Adaptive query compi-
lation in graph databases,” in 2021 IEEE 37th International Conference
on Data Engineering Workshops (ICDEW), 2021, pp. 112–119.

