
Learned Index on GPU
Xun Zhong, Yong Zhang*, Yu Chen, Chao Li*, Chunxiao Xing

BNRist, DCST, Institute of Precision Medicine, Institute of Internet Industry, Tsinghua University, Beijing, China.
{zhongx21, y-c19}@mails.tsinghua.edu.cn; {zhangyong05, xingcx, li-chao}@tsinghua.edu.cn

Abstract—Index is a key structure created to quickly access
specific information in database. Recent research on ”learned
indexes” has received extensive attention. The key idea is that
index can be regarded as a model that maps keys to specific
locations in data sets, so the traditional index structure can be
replaced by machine learning models. Current learned indexes
universally gain higher time efficiency and occupy smaller space
than traditional indexes, but their query efficiency and concur-
rency are limited by CPU.

GPU is widely used in computing intensive tasks because of its
unique architecture and powerful computing ability. According to
the research on learned index in recent years, we propose a new
trait of thought to combine the advantages of GPU and learned
index, which puts learned index in GPU memory and makes full
use of the high concurrency and computing power of GPU. We
implement the PGM-index on GPU and conduct an extensive set
of experiments on several real-life and synthetic datasets. The
results demonstrate that our method beats the original learned
index on CPU by up to 20× for static workloads when query
scale is large.

Index Terms—Learned Index, GPU, Parallel Query

I. INTRODUCTION

With the continuous growth of data scale, new algorithms
and data structures for the management of massive data are
developing rapidly. Recently, the combination of artificial
intelligence and database has given birth to a new research
direction called ”learned index” [1]. Traditional indexes are
supposed to build on data with the worst distribution to
gain good generality while learned indexes utilize machine
learning models to learn the data distribution and predict the
position of a lookup key in the dataset. Many studies [2]–[4]
demonstrate that learned indexes achieve significant advan-
tages over traditional indexes in terms of high performance
and low space occupancy by extracting the patterns in the data
through succinct models. The original learned index called
Recursive Model Index(RMI) [1] uses a hierarchy of machine
learning models. RMI’s structure and implementation are very
concise but it mainly focuses on read-only workloads. Various
types of learned index structures were proposed after RMI,
including ALEX [3], PGM-index [2] and LIPP [4], that use
well-designed structures to organize machine learning models
and provide support for insertions and deletions while gaining
better performance.

Current learned indexes’ query efficiency and concurrency
are usually limited by the computing power and throughput
of CPU. Machine learning models used in learned index are
computing intensive tasks. As is known, Graphics Processing

*Yong Zhang and Chao Li are the corresponding authors.

Units(GPU) or Tensor Processing Unit (TPU) is indispensable
in machine learning and deep learning research area but
current learned indexes are all assumed to be running on CPU
and only adopt simple models like linear regression model or
two-layer fully connected neural network. Moreover, currently
learned indexes utilize low concurrency of CPU, which means
they cannot process a large number of queries in an efficient
way.

To tackle with these issues, we think of utilizing GPU,
which has obtained broad application for its powerful comput-
ing power and high throughput [10]. Actually, researchers have
tried to use GPU to improve traditional index performance,
including index for query optimization in computing-intensive
scenarios like index for kNN queries in road networks [12],
parallel index for processing high-dimensional big data [13]
and index supporting spatio-temporal queries over historical
data [11]. Although these indexes performed well in these
scenarios but are not universal and cannot be built on general
data.Some scholars also tried to implement general traditional
index on GPU like hash table [15] and B+Tree [7], [14]
and also achieved good performance. However, traditional
indexes mainly rely on cache and branch operations that can
be processed better by CPU cores rather than GPU cores,
resulting in undesirable performance loss.

Architecturally, the CPU is composed of a few cores with
cache designed to handle a wide-range of tasks while GPU is
composed of hundreds of cores that can only perform simple
operations. Learned indexes replace branch search in tradition
index with machine learning model computation, which fits
in with the architecture of GPU. Despite the advantages of
GPU and the correspondence between learned index and GPU
architecture, developing learned index on GPU is not without
challenges. There are three main problems that need to be
addressed in order to attain the efficient parallel computing ca-
pability of GPU: (1) The latency for transferring the input data
in main memory and retrieving the results from GPU memory
is still significantly high; (2) The performance loss caused
by operation synchronization between CPU and GPU kernels
can be serious; (3) GPU has hierarchical memory space and
unique way to access memory efficiently so the adaptability
of current learned index structure in GPU architecture should
also be considered.

In this paper, we focus on the scenarios with few or no
update and delete operations such as blockchain, and try
to deal with the last two problems. We select PGM-index
[2], a concise learned index structure with contiguous space
storage implementation which can be efficiently accessed in



GPU memory, migrate it to GPU and build a GPU learned
index. During the migration, we design an efficient structure
where index is fully stored in GPU memory to avoid the
performance loss caused by synchronization between CPU and
GPU kernels. As the index building algorithm needs to traverse
the dataset and cannot benefit from parallel optimization,
PGM-index is firstly built on CPU, then flattened to an
array and finally transferred to GPU memory with additional
information. In the process of query, keys are collected in CPU
and transferred to GPU to execute the query operations. The
results are retrieved from GPU memory after the completion
of query operations. The combination of GPU and learned
index can both avoid the complicated branch operation which
is undesirable in GPU kernel and make full use of parallel
computing capability of GPU to increase the concurrency of
learned, consequently giving full play to the advantages of
both sides.

In the rest of the paper, we begin by describing background
on GPU and PGM-index in Section II. Then, we state our
acceleration ratio computation model and describe how to
implement PGM-index on GPU in Section III. After that, we
perform experiments on several real-life and synthetic datasets
in Section IV. Finally, we discuss our findings and conclude
the paper in Section V.

II. BACKGROUND

A. GPU and CUDA

GPU is not limited to processing graphics but has become an
indispensable part of today’s mainstream computing systems
for its powerful computing power and high throughput [10].
In GPU architectures, more transistors are used for data
processing, such as floating-point computation, rather than
data caching and logical control. By sacrificing the complexity
and independence of threading tasks, GPU can efficiently
manage thousands of threads simultaneously. GPU can not be
used as an independent computing platform, but needs to work
with CPU, that is, CPU controls the execution sequence of
programs, while GPU deals with computing intensive subtasks.

Compute Unified Device Architecture(CUDA) [6] from
NVIDIA provides a powerful platform for writing parallel
programs on GPU. GPU programs are organized into kernels,
which are C-like functions called from within the CPU, also
called the host. Kernels launch a grid of thousands of simul-
taneously executing threads, which are grouped into blocks.
The GPU’s memory space is separated from the host’s, which
makes it necessary to send all input data through the PCIe bus
before any processing can take place in the GPU, and to send
all output data from the GPU back to the host. The memory
space of GPUs is also hierarchical: threads can access their
own individual local memory registers; threads in a block can
cooperate by using the larger block-wide shared memory; and
threads across different blocks all have access to the slower
but bigger global GPU memory. Memory coalescing [6] is a
significant technique in GPU, which allows optimal usage of
the global memory bandwidth. When parallel threads running
the same instruction access to consecutive locations in the

Fig. 1. RMI structure [1]

Fig. 2. GPU-PGM structure

global memory, the most favorable access pattern is achieved.
Consequently, continuous storage structure based on offset
access is more efficient in GPU.

B. GPU Traditional Index

Modern GPU architecture makes it possible to write general
GPU programs and many researchers utilize the platform
to optimize index query. Early GPU indexes are mainly
hash index and B+Tree index. Kaczmarski implemented an
experimental B+-tree for GPU [16], which is a typical im-
plementation of traditional B+Tree. Zhang et al. used a hash
index in GPU to accelerate concurrent queries [15], which
collects query keys within time interval to do parallel query
in GPU. There are also many structural improvements for GPU
traditional index. Shahvarani et al. proposed a hybrid B+-tree
on CPU-GPU heterogeneous computing platforms [14] and
saved GPU memory greatly. Awad et al. engineered a high-
performance GPU B-Tree [7] which has been declared as the
state of the art in GPU traditional index.

C. Learned Index

The first learned index RMI proposed by Kraska et al.
consists of multiple levels of learned models. As shown in
Figure 1, given a search key, current level’s learned model
predicts which model in next level will be responsible for
the key. The prediction may not be exactly precise and RMI
then performs a local search in the models array to locate the
desired model. The process of predicting and locally searching



can be done recursively until arriving the last level. Last level’s
learned model will predict the position of the key in the
dataset organized as a sorted array. RMI is built by training
the learned model of each level from the top down recursively
and models in each level can be specified. RMI is designed
for read-only workloads and lack of support for updates and
error range specifying, but its concise structure still provides
a good reference for the follow-up study of learned index.

Some recent studies propose a number of enhanced learned
index structures [2]–[4], that provide support for updates while
gaining better performance and occupying less space. ALEX
[3] and LIPP [4] are fully dynamic index structures. The
structure of ALEX is similar to RMI, but the difference is
that ALEX employs gapped arrays in the data nodes to reduce
the entry movement cost for insertions. When a data node is
close to full, ALEX adopts different strategies to expand or
split the node according to the node size. LIPP also spares
gap in node for insertions like ALEX, but redesigns ingenious
structure where all nodes are treated equally and all predictions
made by models are exact, resulting in better performance for
queries and updates.

PGM-index [2] uses linear models and separates the keys
in different linear segments with given error bound. Unlike
other learned indexes, each segment of PGM-index specifies
the first key covered by the segment. In this way, PGM-index
recursively constructs static index structure on the sorted keys
of segments in low level. To support insertions, PGM-index
employs the idea of LSM-tree [5], that is building a series
of PGM-index over subsets and merging them into a large
subset and build a new PGM-index. In this paper, we do not
implement insertions for PGM-index on GPU and leave it as
future work.

As PGM-index uses contiguous space storage which is more
efficient in GPU memory structure than linked-nodes storage
ALEX and LIPP uses, we tend to implement the PGM-index
on GPU and gain higher query acceleration ratio.

III. PGM-INDEX ON GPU

In this section, we give an overview of the structure of
PGM-index on GPU(GPU-PGM) and set up a quantitative
model to evaluate the speedup of GPU-PGM compared to
original PGM-index(CPU-PGM) [2] in query operations. Then
we describe the data structure building process and search
operations of GPU-PGM .

A. The Structure of GPU-PGM

In our design, GPU-PGM is fully stored in GPU memory to
avoid the performance loss caused by synchronization between
CPU and GPU kernals. Because PGM-index occupies up to
three orders orders of magnitude less space than B+Tree [2],
we can assume this approach is reasonable.

Before executing query operation, we need to collect batch
of query keys on CPU. If the query request for the database is
not concurrent, we can collect query keys within a specified
time interval as a batch.

Since we consider that the input queries are given in main
memory, the first step is to transfer them into GPU memory,
before the GPU starts executing a search operation.

Parallel query is the main advantage of GPU-PGM. GPU
assigns queries to kernels for execution and each kernal is
responsible for dispatching threads to perform query opera-
tions. Threads in the same kernal will access PGM-index in
GPU global memory in a synchronous and aligned way and
execute the same query instructions, finally get the results and
write to the specified memory location in parallel.

The precise positions will be transferred into main memory
after the GPU completes the search operation. In the last step,
the CPU uses these positions to reach the target tuple. The
structure of GPU-PGM is shown in Figure 2.

In order to comprehensively evaluate the query performance
of GPU-PGM, we use total execution time including query
time of batch queries in GPU kernals and time of transferring
queries to GPU memory and results from GPU memory.

Similar to the analysis of Hybrid B+-tree [14], we build
our cost model where T is time required for each step of the
GPU-PGM structure as follows:

1) Transferring search key to GPU memory:
Tinput = Tinit + αQ/B

2) GPU traversal of all inner nodes of tree per each query:
Texecute = Kinit +Q/SIMDG × PGPU

3) Transfer of positions to CPU memory:
Toutput = Tinit + βQ/B

• B: Data transfer bandwidth between main memory and
GPU memory.

• α: The size of single query key.
• β: The size of single position.
• Q: The Number of query keys.
• Tinit: Data transfer initialization time between main

memory and GPU memory.
• Kinit: GPU initialization time for search operation.
• SIMDG : GPU SIMD width.
• PGPU : Average processing time for a query on GPU.
• PCPU : Average processing time for a query on CPU.
We gain the total execution time of GPU-PGM and CPU-

PGM from above:
1) Total CPU-PGM query time

TCPU = αQ× PCPU

2) Total GPU-PGM query time
TGPU = Tinput + Texecute + Toutput

The speedup ratio of GPU-PGM to CPU-PGM is:

TCPU/TGPU =
Q

C
+

αPCPU

(α+ β)/B + PGPU/SIMDG
(1)

where C is a constant number.
From the acceleration ratio in cost model we can inaccu-

rately conclude that with the increase of the number of queries,
the advantages of GPU become more obvious and the main
constraint of query performance is the data transfer bandwidth
between main memory and GPU memory. In a real scenario,
the SIMDG can vary with the increase of the number of



parallel tasks, which depends on the number of GPU kernals
and scheduling strategy.

B. The Algorithms of GPU-PGM

Index Building. The first step of index construction is to build
a piecewise linear model with error not exceeding threshold ϵ.
In this step the streaming algorithm which takes O(n) optimal
time and space is admitted to ensure the piecewise linear
model is optimal. The detail is shown in Algorithm 1.

The key idea of the algorithm is to reduce this problem to
the one of constructing a convex hull of a set of points, which
in this case is the set {keyi, pos(keyi)} grown incrementally
for i = 0, ..., n − 1. As long as the convex hull can be
enclosed in a rectangle of height no more than 2ϵ, the index
i is incremented and the set is extended. As soon as the
rectangle enclosing the convex hull is higher than 2ϵ, stop the
construction and determine one segment by taking the line
which splits that rectangle into two equal-sized halves(Lines
3-10). Then the algorithm restarts from the rest of the input
points. This greedy approach can be proved to be optimal
in the number of segments and have linear time and space
complexity.

Algorithm 1 Algorithm for GPU-PGM building
Input: keys: sorted array, ϵ: max error
Output: levels: flattened PGM-index organized as an array

offsets: offsets of each level in flattened PGM-index
Initialisation: segnum = ∞, levels = [], cur = keys

1: for segnum ̸= 1 do
2: points = []
3: for i = 0 to cur.size do
4: Construct convex hull over points ∪ cur[i]
5: if (convex hull suits 2ϵ rectangle) then
6: Compute the minimal rectangle cover points
7: seg =line splits rectangle into two equal halves
8: model.append(seg)
9: end if

10: end for
11: segnum = model.size
12: levels.append(model)
13: cur = [model[0].key, ...,model[segnum− 1].key]
14: end for
15: offsets = [segnums[0], ..., segnums[height− 1]]
16: Flatten levels
17: Move flattened levels and offsets to GPU memory

After the piecewise linear model is established, the next
step is to build hierarchical index structure. We start with
the model constructed over the whole input array and then
extract the first key of input array covered by each segment
and construct another piecewise linear model over this reduced
set of keys(Lines 1-14). We proceed in recursive way until the
model consists of only one segment, as shown in Figure 3.

As the PGM-index building algorithm needs to traverse the
dataset and cannot benefit from parallel optimization, we firstly
build PGM-index on CPU. Then we organize the hierarchical

Fig. 3. PGM-index structure [2]

index structure as a compact array and record the offset of
each level, finally transfer PGM-index with useful additional
information to GPU memory and gain GPU-PGM(Lines 15-
17).

Algorithm 2 Algorithm for GPU-PGM query
Input: keys: sorted array, ϵ: max error, t: threads num

levels: index, queries: query keys
Output: pos: the precise position of query keys

Dispatch queries to t threads
Each thread gains tid from multi-dimensional identifier
Kernal executing begin:

1: if (tid ≤ queries.size) then
2: query = queries[tid]
3: f = levels[0][0].linear
4: next pos = f(query)
5: for i = 0 to levels.size do
6: range = [next pos− ϵ, next pos+ ϵ]
7: segment = binary search(range, query)
8: f = segment.linear
9: next pos = f(query)

10: end for
11: end if
12: gpu pos[tid] = next pos

Kernal executing end
13: pos = Move gpu pos to main memory

Index Query. The pseudocode of query operation is described
in Algorithm 2. The batch of query keys is transferred
from main memory to GPU memory and then dispatched to
designated number of threads to execute. The most efficient
operation on the GPU is that threads in the same block execute
the same query instructions and access GPU global memory
in a synchronous and aligned way. So it’s necessary to check
the number of threads in streaming multiprocessor in the
current GPU when threads are dispatched. There is a multi-
dimensional identifier in each thread, which can be converted
into an index number tid to obtain the query key from the
batch of query keys(Lines 1-2).

Now, each thread gets the corresponding query key and the
query operation works as follows. At every level, we use the
segment referring to the visited node to estimate the position of



the searched key among the keys of the lower level(Lines 3-4).
The real position is then found by a binary search in a range
of size 2ϵ centered around the estimated position. Given that
every key on the next level is the first key covered by a segment
on that level, we have identified the next segment to query,
and the process continues until the last level is reached(Lines
5-10). The results are written to the specified location and
transferred back to the main memory(Lines 12-13).

IV. EXPERIMENT

In this section, we describe the datasets, hardware and
the setup used in the experiments. We compare GPU-PGM
against three baselines: (1) PGM-index on CPU [2]; (2) GPU-
BTree proposed by Awad et al., a high-performance GPU
implementation of a B-Tree which is the state of the art [7]; (3)
A production quality B+Tree implementation known as STX
B+Tree [8].

A. Datasets

We use four sorted datasets from Harvard Dataverse [9]:
(1) Books data in library management system; (2) Part of
indexes data in Wikipedia; (3) User data from Facebook; (4)
Longitudes of locations in North America from Open Street
Maps. These four datasets are from the actual application
scenarios and have been widely used in previous researches,
whose characteristics are shown in Table I.

TABLE I
DATASET CHARACTERISTICS

Dataset Size Key Type Key Size Key Num

Books 781.25MB int32 4B 2× 109

Wikipedia 1562.51MB int64 8B 2× 109

Facebook 781.25MB int32 4B 2× 109

OSM 1562.51MB int64 8B 2× 109

B. Hardware

We run all experiments on a machine with Ubuntu 20.04
using CUDA 11. The hardware used is an Intel Xeon Gold
6248 2.50GHz CPU equipped with 128GB (4x32GB) DRAM
and NVIDIA RTX 2080ti equipped with 11GB memory.

C. Parameters

Max error ϵ in PGM-index is significant to query time and
index size. As ϵ parameter increases, index size and height
decrease. The query time is limited by the expanded search
range while benefiting from reduced index size and height.
We employ ϵ = 128 as default parameters for our tests. In
addition, the number of threads and blocks in GPU kernel are
set to query size/1024 and 1024 respectively.

D. Performance Measure

In our experiments, the performance measure is the query
time of a batch of query keys. For GPU index we count total
execution time of query operation measured from the moment
when it starts executing until the moment when the results

4 5 6 7 8
0

50
100
150
200

Ac
ce

le
ra

tio
n 

Ra
tio

Book

4 5 6 7 8
0

50
100
150
200

Wiki

4 5 6 7 8
log10(Query Size)

0
50

100
150
200

Ac
ce

le
ra

tio
n 

Ra
tio

Facebook

4 5 6 7 8
log10(Query Size)

0
50

100
150
200

OSM

B+tree / GPU-PGM B+tree / CPU-PGM

Fig. 4. Comparing GPU-PGM and CPU-PGM

4 5 6 7 8
0

50
100
150
200

Ac
ce

le
ra

tio
n 

Ra
tio

Book

4 5 6 7 8
0

50
100
150
200

Wiki

4 5 6 7 8
log10(Query Size)

0
50

100
150
200

Ac
ce

le
ra

tio
n 

Ra
tio

Facebook

4 5 6 7 8
log10(Query Size)

0
50

100
150
200

OSM

B+tree / GPU-PGM B+tree / GPU-BTree

Fig. 5. Comparing GPU-PGM and GPU-BTree

are available in the host. Furthermore, We do not estimate the
performance of the range query in our experiment, because
keys in the last layer of index are stored in an ordered array,
and the range query can be simply implemented by point query
and linear search.

TABLE II
INDEX BUILDING TIME

Building Time(s)

Dataset B+Tree GPU-BTree CPU-PGM GPU-PGM

Books 33.34 58.23 16.67 17.99
Wikipedia 27.07 51.94 13.67 13.95
Facebook 32.17 53.88 35.44 36.77

OSM 29.22 59.50 31.14 31.43

E. Experimental Results

Query performance. Due to the large gap in query efficiency,
we use an indirect measure, acceleration ratio (i.e. The ratio



of index query time to STX B+Tree [8] query time) to show
the results rather than the query time of a batch of query
keys. Figure 4 and Figure 5 compare the acceleration ratio
of GPU-PGM and CPU-PGM, GPU-PGM and GPU-BTree
respectively on the four datasets.

From Figure 4 we see that the acceleration ratio of GPU-
PGM is generally distributed between 50 and 200 when the
query size is greater than 106, which is much higher than that
of CPU-PGM. The performance gap between GPU-PGM and
CPU-PGM does not always widen with the increase of the
number of queries, as shown in equation 1 because we ignore
the SIMDG which can vary with the number of parallel
tasks. When the number of free threads in GPU kernels is
less than the number of queries, query keys will be divided
and dispatched to free threads in different batches. In addition,
GPU scheduling strategy and unpredictable memory access
can be influence factors.

In Figure 5, we find GPU-PGM beats GPU-BTree by up to
1.5×-3× on acceleration ratio. Compared with GPU traditional
index, the advantage of GPU-PGM is that the query execution
efficiency in GPU is very high. However, this advantage
diminishes as the number of query keys increases because the
time of data transfer between main memory and GPU memory
will dominate when the number of query keys is large enough,
consequently the query execution time in GPU becomes less
important.
Building Time. Table II shows the total time to build indexes
over four datasets. The building algorithm of PGM-index
recursively calls the greedy method to build optimal piecewise
linear model which takes O(n) time and space. The number
of levels in PGM-index is usually not large but can vary
according to the distribution of the dataset. In contrast, The
building time of B+Tree index is relatively stable on datasets
with the same size. GPU-PGM takes a little more time than
CPU-PGM for data transfer and storing additional information.

TABLE III
INDEX SPACE OCCUPATION

Memory(MB)

Dataset B+Tree GPU-BTree CPU-PGM GPU-PGM

Books 153.34 320.23 1.21 2.19
Wikipedia 127.07 334.94 0.74 1.32
Facebook 307.17 352.88 15.04 27.92

OSM 393.22 341.50 8.43 15.01

Space Occupation. Table III shows the total space occupied
by different indexes in four datasets. It can be found that GPU-
PGM also inherits the advantage of CPU-PGM in space occu-
pation, occupies two orders of magnitude less space than STX
B+Tree and GPU-BTree, because the index implementation
based on continuous memory space makes its storage in GPU
memory consistent with that in the main memory.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a perspective to combine learned
index with GPU to give full play to the advantages of

both GPU architecture and learned index structure. For the
case of GPU memory structure we choose PGM-index with
contiguous space storage and implement the PGM-index on
GPU. In four datasets with hundred million keys from practical
application scenarios, the experimental results of this paper
show that GPU-PGM improves the query efficiency by one
order of magnitude compared with CPU-PGM while having
the same advantage as PGM in space occupation.

In the future, we would like to do research on the improve-
ment of PGM-index structure for GPU, optimization of data
transfer and support for insertion.

ACKNOWLEDGMENT

This work was supported by National Key R&D Program
of China (2018YFB1402701) and State Key Laboratory of
Computer Architecture (ICT, CAS) under Grant No. CAR-
CHA202008.

REFERENCES

[1] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 489–504.

[2] P. Ferragina and G. Vinciguerra, “The pgm-index: a fully-dynamic com-
pressed learned index with provable worst-case bounds,” Proceedings of
the VLDB Endowment, vol. 13, no. 8, pp. 1162–1175, 2020.

[3] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann et al., “Alex: an updatable
adaptive learned index,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 969–984.

[4] J. Wu, Y. Zhang, S. Chen, J. Wang, Y. Chen, and C. Xing, “Updatable
learned index with precise positions,” Proc. VLDB Endow., vol. 14, no. 8,
p. 1276–1288, apr 2021.

[5] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[6] NVIDIA Corporation, “Programming guide: Cuda toolkit documenta-
tion,” 2020. [Online]. Available: https://docs.nvidia.com/

[7] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton, and J. D.
Owens, “Engineering a high-performance gpu b-tree,” in Proceedings of
the 24th symposium on principles and practice of parallel programming,
2019, pp. 145–157.

[8] T. Bingmann, “Stx b+ tree c++ template classes,” 2013. [Online].
Available: https://panthema.net/2007/stx-btree/

[9] R. Marcus, A. Kipf, and A. van Renen, “Searching on Sorted Data,”
2019. [Online]. Available: https://doi.org/10.7910/DVN/JGVF9A

[10] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008.

[11] H. Doraiswamy, H. T. Vo, C. T. Silva, and J. Freire, “A gpu-based index
to support interactive spatio-temporal queries over historical data,” in
IEEE International Conference on Data Engineering, 2016.

[12] C. Li, Y. Gu, J. Qi, J. He, Q. Deng, and G. Yu, “A gpu accelerated
update efficient index for knn queries in road networks,” in 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE,
2018, pp. 881–892.

[13] M. Kim, L. Liu, and W. Choi, “A gpu-aware parallel index for processing
high-dimensional big data,” IEEE Transactions on Computers, vol. 67,
no. 10, pp. 1388–1402, 2018.

[14] A. Shahvarani and H.-A. Jacobsen, “A hybrid b+-tree as solution for
in-memory indexing on cpu-gpu heterogeneous computing platforms,”
in Proceedings of the 2016 International Conference on Management of
Data, 2016, pp. 1523–1538.

[15] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores,” Proceedings of the VLDB Endowment, vol. 8, no. 11, pp. 1226–
1237, 2015.

[16] K. Kaczmarski, “Experimental b+-tree for gpu,” ADBIS (2), vol. 11,
2011.


