DOE: Database Offloading Engine for Accelerating
SQL Processing

Wenyan Lu!, Yan Chen?, Jingya Wu'?,

Yu Zhangz, Xiaowei Li!, Guihai Yan'

IState Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2 YUSUR Technology Co., Ltd.
3University of Chinese Academy of Sciences
Beijing, China
13 (luwenyan, wujingya, Ixw, yan)@ict.ac.cn, *(yanchen, zy)@yusur.tech

Abstract—The CPU-Accelerator heterogeneous systems have
demonstrated performance and efficiency benefits on DBMSs.
However, it is non-trivial to customize efficient domain-specific
accelerators. Even if high-performance accelerators are available
for DBMS, it is challenge to integrate the software with accel-
erator non-intrusively. To address these problems, we proposed
a hardware-software co-designed system, DOE, which contains
hardware accelerator architecture - Conflux for effective SQL
operation offloading, and a software programming platform -
DP2 for application integration non-intrusively. The experiment
results show that DOE achieves more than 100x and 10x perfor-
mance improvement compared with PostgreSQL and MonetDB
respectively.

Index Terms—DOE, DP2, Database, Heterogeneous system

I. INTRODUCTION

To meet stringent performance requirement and power
budget of data processing systems, it is not uncommon to
offload some computations from host CPU to a dedicated
processing engine such as GPU or FPGA [12], [13]. The
computing tandem of CPU-Accelerator platform, as a typical
heterogeneous system, is believed to be a promising paradigm
to unlock the advantage of domain-specific computing.

To reap the potential of “offloading”, it does not come for
free because of the two challenges. 1) Integrating an acceler-
ator into software application requires massive and intrusive
developments. Most applications do not have the flexibility
to port to heterogeneous computing. So the integration with
an accelerator requires massive changes inside the application.
2) Accelerator customization is highly complex. Offloading a
job from host CPU to general-purpose designed processors
does not yield better performance, but overhead. To tackle
this challenge, the key is to hardwire the computing logic
according to task features, i.e. customization.

Keeping the two fundamental challenges in mind, we ex-
plore the database offloading engine (DOE), a new computing
system for general DBMSs. We try to answer the question:
Can the CPU-Accelerator paradigm boosts a general database
performance, without intrusive modifications to the core logic

This work is supported by National Natural Science Foundation
of China No. 61872336, 62002340, 62090020, the Strategic Priority
Research Program of the Chinese Academy of Sciences, Grant
No. XDB44030100 and in part by Youth Innovation Promotion
Association CAS No. Y201923.

of the target database? An ideal DOE should be transparent
to the target database and applications.

Although it’s intuitive to resort to novel hardware for
performance, prior development work for database accelerator
suffers critical limitations. The first is that the prior only
focused on the SQL computing logic, but left vacancy in how
to enable data sharing with the host [4], [7]. The second is
missing the synergy with the full functional database.

To overcome the above limitations, we take another perspec-
tive for DOE development. First, DOE is not a database, but an
offloading engine. The accelerator serves as a co-processor to
the host CPU system running DBMS, the filter and aggregation
queries are forward to the customized co-processor to exploit
ultra-high parallelism and low latency, while the other control-
intensive and IO-intensive DB routines, such as index building
and data duplication, still resides in CPU domain. Second,
DOE should be independent to the host DBMS and therefore
applicable to speeding up query executions. Hence, DOE
should be engaged with a set of simple but comprehensive
APIs for offloading specific queries as transparent as possible.

This paper demonstrated that integrating an accelerator
without intrusive modification into database is possible.
Clearly, only part of operations of SQL are suitable for of-
floading. The offloading candidates share the common features
such as computing intensiveness, fine-grained parallelizability,
and involving a large volume of random memory access.
By contrast, other offloading-unfriendly operations should be
handled by host CPU. By thoroughly profiling the TPC bench-
marks, we developed a set of design rules to make the DOE
system be an ideal complement with the host database. We
built a hardware accelerator architecture to maximize memory
bandwidth and fine-grained query executing parallelism, as
well as a programming platform for non-intrusive integration
between accelerator and database application. DOE, as far
as we know, is the first general database accelerating engine
to emphasize the synergy between the host database and the
accelerator.

II. BACKGROUND & PRELIMINARY

A. The potential of database offloading

1) CPU-ACC Architecture: As Fig. 1(a) shows, there are
three layers in a typical heterogeneous computing architecture.

Database

Planning
Functions

Application Planning Stage

Execution
Functions

UnOffloadable
Functions

Offloadable
Functions

SQL Parser
[Device Driver | ¥ Device Driver |
[o0s | { Query Tree | Query Executor || 05
' [
Host Device Device

Host
CPU | leData XPU |
(o

(c): CPU-ACC architecture of DB

CPU | «Data» | XPU

(2): GPU-ACG architecture

| Storage
1\ Engine

Fig. 1. CPU-DOE architecture

(b): SQL execution flow

i) Device, that accelerates the specific functions through a
customized accelerator (e.g., XPUs). ii) Device Driver, that
abstracts the device capabilities for application programming.
iii) Application, that uses the device to accelerate the offload-
able functions.

2) The SQL execution flow of database system: The query
operations are complex but have similar execution flow among
different database systems. Fig. 1(b) shows a simplified query
processing flow, which includes two stages, Planning Stage
and Execution Stage. Planning stage translates the SQL to
query plan. The query plan is a binary tree structure, where the
tree nodes are the query operators. Execution stage computes
the result by executing plan tree recursively.

3) The opportunity of database offloading: In database ap-
plications, the execution stage is composed of high CPU-cost
computations, especially in the high-throughput scenario (like
OLAP). So, offloading these computations to a heterogeneous
computing device has become an effective solution for the
performance improvement of data query. As Fig. 1(c) shows,
this offloading solution is systematic engineering of database
applications, drivers and device development.

B. Offloading-friendly SQL Operations

We make a detailed analysis on the six offloading-friendly
SQL operations in data access pattern to guide the DOE
design, as shown in Fig.2.

1) Selection & Projection: In the column-oriented storage,
the data in the same column are stored in continuous address
space of DRAM. Both selection and projection are conducted
on specific data columns. So, a huge amount of continuous
DRAM access is dominated in selection and projection.

2) Group-by & Aggregation: It is common to perform
group-by functions based on the ordered sequence. In this
situation, it is intuitive to get the groups by scanning the entire
data column. Similar to selection & projection, this kind of
operations access DRAM from continuous address space.

3) Hash Join: Hash join is one of the most complex and
time-consuming operations. It is composed of two phases:
build and probe. The core operation of both build and probe
phases are hash table lookuping, where the random DRAM
access dominates both phases, as shown in Fig. 2(3).

4) Sort: Sort operations reorder the records of one table
according to the values of a key column in ascend or descend.
It frequently involves a large number of random data access
and movement. Randomly accessing DRAM for small data is
dominated in sort operations.

. Result 0

— [3]

(1) Selection & Projection

Result 0
col 0|col 1]col 0col 1

Index

Sort —>—>

22 10

(3) Join [11]

(4) Sort
Fig. 2. Basic Operations vs. Data Access Pattern

In summary, the above operations can be classified into two
categories: i) scan-like, continuous memory access, including
selection & projection, and aggregation & group-by; ii) join-
like, random memory access, including hash join and sort.

C. The “Tricky” DRAM bandwidth for DOE customization

In DBMS, it is not uncommon that ultra low DRAM
bandwidth utilization is achieved by both scan-like and join-
like operations. DRAM bandwidth optimization becomes a
key breakthrough for performance improvement. Next, we
make analyses on DRAM characteristics to motivate the DOE
customization.

1) Continuous memory access overwhelms the CPU com-
puting power.: Pipeline processing of memory controller
conceals the DRAM access latency. The CPU will undergo
bandwidth over-provisioning, because it cannot consume such
amount of data volume. This case was observed in many
column-based operations such as scan-then-filter on a deep
column. In this situation, the bottleneck is not in I0-end but
in CPU-end, so the DOE should be able to consume such high
data volume.

2) Random memory access causes serious bandwidth uti-
lization decay.: Long stall cycles are inevitable when access-
ing random address space. Even worse, while only a small
portion data of memory access is required in one operation,
for example, 4 bytes out of 64 bytes, the bandwidth wasting
will get more prominent. This case was observed in join and
sort operations which randomly access DRAM for small data.
Avoiding these stalls is one of the most important optimization
methodology for the effective use of DRAM bandwidth. In this
situation, the processing bottleneck is at 10-end.

III. DP2: DOE PROGRAMMING PLATFORM

We designed a platform - DOE Programming Platform
(DP2) for the integration of the DOE device and database
applications. The platform aims to enable the programming
capability and computation offloading, while the application
is responsible for the implementations of query plans and
operators.

Database Application

[DB Core |

P R n
Planning Execution
DB Planner DB Executor

B execute i
! DP2 query plan

construct
DP2 query plan DPZ2 PlanTree
Operator
implementations

Invgkes Implements Implenents

¥

Operator PlanTree Runtime
b | Interface Interface Lib
Static mmpnel : Flumlmelcnmplle Rurftime
***************** exefute
Compliler query plan
Stare pmgra.{nfinsuuclions
Device Driver
l DOE Device l
Program Space Execute XPU

Instructions

Fig. 3. DP2 Architecture

The boundary between DOE platform and database appli-
cations is the query plan and operators. DP2 abstracts and
encapsulates the DOE database operators, including the in-
struction execution and data transmission. It also provides the
programmable interfaces for the implementations of offload-
friendly operators. Thereby, rewriting the query plan becomes
easier in database applications.

Fig.3 shows the high-level architecture of DP2, which is
consisted of four core components.

A. Operator Interfaces

We design the operator interface based on the concept from
open-source databases. Generally, the operator interfaces are
defined by the platform, and implemented by applications.

1) Scan interface that should be implemented for loading
target data into device memory with filtering conditions.

2) Join interface that should be implemented for joining
multiple columns based on the join conditions.

3) Project interface that should be implemented for choos-
ing target columns based on the SQL context.

4) GroupBy interface that should be implemented for
grouping the query result by the given column name.

B. PlanTree Interface

The query plan is a binary tree, in which the tree node is
the Operator Interface. The query plan is defined by platform,
and constructed by the application, and eventually executed by
the platform in the runtime. The PlanTree node contains 4 key
elements, i) left child node, ii) right child node, iii) the operator
implementation, iv) the output of operator implementation.
Fig. 4 shows a sample of plan tree, which is constructed
for offloading SQL “SELECT a.y, b.z FROM A as a, B as
b WHERE a.x=b.x GROUP BY a.x” to DOE device.

GroupBy column x

Project columns x, v, z

Scantiable A Scantable B

Fig. 4. PlanTree Structure

TABLE 1
COMMON FUNCTION LIB

Purpose
Create the column metadata and allocate storage
space in the DOE device
Release the storage space in the DOE device
Write column data from host to DOE device storage

Function
columnCreate

columnRelease
columnWrite

columnRead Read column data from DOE device to host storage
columnJoin Execute a Join operation for multiple columns
rowFilter Execute a filtering operation on a column with

conditions

C. Common Function Lib

The common function lib provides the column-oriented
operation functions based on the device capabilities, and is
used for the implementations of operator interface by appli-
cation developer. Table 1 lists part of functions in this lib. As
an example, while implementing a ‘Scan operator’, we use
‘columnWrite’ for copying data from host to device, then use
‘rowFilter’ to filter out the rows.

D. DP2 Compiler

The DP2 compiler is built for compiling the offload-able
programs to device instructions based on the DOE instruction
set. DP2 compiler supports two access modes. i) Static com-
pilation. The Common Function Lib and Operator Implemen-
tations do not depend on runtime context. Instead, they are
compiled to device in build-time for better performance. ii)
Runtime compilation. The PlanTree varies based on different
SQL context and optimization strategies. And it is compiled
in runtime.

E. DP2 Runtime Lib

The DP2 runtime 1ib provides runtime APIs for applications
to execute the offloaded query plan. The most important API
is ExecutePlan, which takes PlanTree as input and returns the
query results.

IV. CONFLUX: A NOVEL MICRO-ARCHITECTURE FOR DOE

We proposed a novel accelerator architecture design, Con-
flux, with four optimized mechanisms for efficient SQL opera-
tion offloading. There are three goals when designing Conflux:

1) Memory bandwidth efficient. The Conflux should on
one hand avoid random addresses as much as possible
when the data are scattered across the memory space,
and on the other hand be able to reach line-rate process-
ing when data bursting. We propose two mechanisms,
streaming segmentation and random caching, to make
efficient use of the memory bandwidth.

2) High performance. Performance is the top priority.
High performance comes from two mechanisms: i)
computing logic customization, which is represented by
hardwired operators such as hash join, sort, aggregation,
and ii) computing session management, which enables
massively fine-grained task parallelism.

3) Programmable. Conflux is not statically configured
for a given specific query expression, but can be pro-
grammed to executed any complex queries. We build a
instruction set able to express tasks derived from the
original SQL queries.

Mo M1 Mn

On-Chip Cache
Locak-interconnestion:
Filter
Co||Po||P1 ‘

'_Join) Man_agement_)
Pn Co||Po||P1|.|Pn e Co||Po||P1 Pn

Data Object Management System (DOMS) ‘

Synch Controller
'PM|| Decoder & Dispatch |

[
L
|
=

DDR 0 | DDR 1 | DDR N |

\ PCle Subsystem (DMA) \
Host Memory

Fig. 5. Conflux Accelerator Architecture

A. Conflux Overview

The overview of Conflux architecture is shown in Fig.5. To
achieve high task-level parallelism, Conflux is built as a many-
core system. Meanwhile, to continuously access DRAM as
much as possible and facilitate full pipelined data processing
for each core, streaming data objects (SDO) are used as the
basic data structure. The key components are as following:

1) Data object management system (DOMS) provides
an efficient shared-memory pool for SDO. It has two
main functions: i) Efficient DRAM space management,
dynamic DRAM pages allocation and re-collection for
SDO; ii) Flexible SDO management, which supports
the recording, segmenting and merging functions for
streaming objects and can transparently serve hundreds
of concurrent data accesses for multi-processing cores.

2) Data synchronization system lays a high-speed data
transmission channel between the CPU-end memory and
the ACC-end DOMS based on PCle DMA mechanism,
to efficiently load source data from CPU-end memory
to DOMS, or directly fetch back the results from the
DOMS to CPU-end memory.

3) Data processing system is consist of several groups
of processing cores, such as selection, projection, join,
and so on. Each group has a configuration core (C-core)
and multiple homogeneous processing cores (P-core). P-
cores run in stateless mode across different streaming
objects. And C-core can distributes tasks to each P-
core as balanced as possible, to maximize task-level
parallelism.

4) On-chip cache system is responsible for random data
buffering, of which are multiple groups of SRAMs
shared by multi-cores.

5) Local interconnection system is NOC-based busses
designed for local data exchange between P-Cores.

6) Control system consists the instruction decoder and
task dispatcher translating DOE ISA to various tasks
for processing cores.

B. Memory bandwidth optimization

1) Streaming Segmentation for Continuous Memory Access:
For scan-like operations, data transmission is efficient by
accessing continuous address space of DRAM. The key opti-
mization is how to improve the capability of data consumption.
We need to maximize data-level parallelism to make full use
of DRAM bandwidth. The key approach is to pre-segment
each SDO, and all segments are processed in parallel. Note

that the SDO pre-segment and result merge are trivial, which
is transparently implemented in DOMS.

Fig.6(1) shows an example of selection. The original input
column col0 is divided into two parts before selection and are
processed in parallel.

2) Random Caching for Random Memory Access: For join-
like operations, data transmission is inefficient when accessing
random address space of DRAM. The key optimization is how
to reduce the amount of random access to DRAM. The on-
chip SRAM has high random access performance. The key
optimization for join-like operations is to cache random data
on SRAM to ensure the address continuity when accessing
DRAM. However, it is challenge to fit a volume-varied SDO
into capacity-limited SRAMs. Additionally, We pre-segment
the SDO into blocks based on memory pages, and then
processing block-by-block.

Fig. 6(2) shows an example of hash join. Firstly, TableO
are segmented into two parts. And then hash tables are built
in parallel and cached in SRAMs. After that, random hash
table lookup is performed efficiently on SRAMs during probe
phase.

C. Execution Optimization for Performance

1) Stateless Execution Simplifying Parallel Tasks Schedul-
ing: After the streaming segmentation, tasks can be concur-
rently conducted on multiple P-Cores. However, the number
of logical tasks and the number of free physical cores often
mismatches, which makes the task to core mapping compli-
cate. To simplify task to core management, we adopt a stateless
execution method, and all processing cores work in data-driven
style.

Fig. 6(3) shows an example of two tasks (Task A and
Task B). After segmentation, all sub-processing of TaskA has
been mapped to processing units (Sel(x, x)). Due to no data
dependency between P-Cores, parts of Task B are allocated
to free P-Cores. By doing so, new tasks can be immediately
allocated for processing on free cores, such as (new task -
>Sel(2,3)), which greatly reduces the time of the core stall.

2) In-place Exchange Enabling Pipeline Execution: Mini-
mizing the volume of data transmission between P-Cores and
DRAM is critical for bandwidth optimization. A SQL query
plan often contains multiple processing phases, where contain
lots of producer ->consumer relationships between consecu-
tive phases. Therefore, a huge amount of data transmission
can be saved by in-place data exchanging between P-Cores.

Fig.6(4) shows an example of “selection ->projection -
>join” task processing. The result of Sel0 is directly passed
to Projl through the local bus, and the result of Projl is used
as the input of Join0 immediately.

D. Conflux Instruction Set Architecture

Flexible and efficient ISA helps to fully stimulate the
acceleration engines. We design a basic set of instruction
expression, and parts list in Table II. The instruction set
architecture (ISA) consists of basic instructions (e.g., Selec-
tion, Projection, Groupby, etc), and auxiliary instructions (e.g.,
StreamSeg, StreamMerge, etc).

Table 0

Table 0
col 0

col 0 10
10 Projection:
5 5 (col 0<=5) Fepl O
8 8 5 Result 0

12

12 . col 0
4 egment Merge | 5
9 4 Projection: 4
6 9 (col 0 <=5) NEEIG
11 6 4

-

(1) Streaming Segmentation

Task Queue Sel(0,0) Sel{0,4) Sel(0,2) Sel(0.3)
Sel(1.0) Selg1;1)y 'sel(1,2) Sel(1.3)
Sel(2,0) Sel2,1) Sel22) Sel(2,3)

Task A

Sel(3.0) Sel3.1) Sel(32) Sel(33) Taoke

(3) Stateless Execution

TABLE II
INSTRUCTION LIST
Class Instruction Type Comments
Cacheless Selection functional -
Cacheless Projection functional
Cacheless Groupby functional
Cacheless Aggregate functional
Cacheless IndexMerge auxiliary Merge multi-condition
results of selection
Cacheless DataMerge auxiliary Merge segmented results
Cacheless StreamSeg auxiliary Segment streaming
into sub-streamings
Cacheless StreamMerge auxiliary Merge multi-streaming
Cacheleness Join functional
Cacheleness Sort functional
Cacheleness Treelndex functional Index-based selection

Cacheleness Projection-random functional =~ Random data

V. EXPERIMENTAL EVALUATION
In this section, we evaluate the proposed DOE system
in terms of DRAM bandwidth utilization, performance, and
resource consumption.

A. Experimental Methodology

1) Baselines: All evaluations were conducted on a Dell Pre-
cision 7920 tower server featuring two intel Xeon Gold 5218
CPU @2.30GHz, with 64GB of memory (four 64-bit 16GB
DDR4-3200). Four DRAMs have a bandwidth of 100GB/s.
We selected two representative RDBMSs (PostgreSQL and
MonetDB) as our baselines.

PostgreSQL. a widely used open-source RDBMS Post-
greSQL 11.7. We use the function*“pg_prewarm” to prefetch
data tables into DRAM, to ensure that all queries are executed
on in-memory data.

MonetDB. a column-oriented DBMS MonetDB 11.31. We
confirmed that MonetDB did not read data from SSDs during
query executions, that is, all data were stored in the DRAMs.

DOE. We integrate the DOE to PostgreSQL system through
the proposed DP2 platform. And, we implemented the Conflux
accelerator in Verilog and build it on the Intel Arria 10 FPGA
(10AX115N2F45E1SG), And, we customized the PCB system
board with 16GB DRAM (two 64-bit 8GB DDR4-2400),
which can deliver 37.5GB/s of bandwidth.

Hash Table Table 1
Table 0 o
col 0 co
Table 0 5 Hash SRAM 10
col 0 4 5
5 8
4 Segment Hash 12
9 4
11 9
ﬁ] Hash SRAM 6
11
(2) Random Caching
Proj 0
Sel1 Local Join1
Local“ Bug
Bus
Sel 2 Proj 2 Join 2
Task A
DRAM Sel 3 Proj 3 Join 3 Task B

(4) In-place Exchange

Fig. 6. Key Optimizations

2) Benchmark: We used the TPC-H dataset as the test data.
To make all tables reside in DRAM, we set the scale factor
as 1 for most of evaluations. We used the 22 test queries as
the benchmark.

B. Configuration Exploring

Otherwise specified, the P-Core configurations, i.e., the
numbers of each type of P-Core, are detailed in Table III.

An implementation can be either computation-bounded or
memory-bounded. In DOE system, DRAM bandwidth uti-
lization is the key optimization object. Firstly, considering
communication constraint, we evaluate each type of P-Core
isolately to bound the maximum number. Then, we carry out
a complete design space exploration considering multiple P-
Cores under computation resource (ALMs and operating fre-
quency) constraints. Out of 508 viabale instances, we selected
the configuration with highest performance configuration de-
tailed in Table III.

TABLE III
KERNEL CONFIGURATION
Selection Projection Groupby Projection-random
32 16 32 8
Join Sort Aggregate Tree-Index
8 6 32 6

C. Experimental Results

1) Resource consumption in FPGA: Table IV details the
resource consumption of each P-Core, DOMS, data synchro-
nization system, on-chip cache, control system, and other basic
components (Others). The “Others” entry in Table IV includes,
PCle, DMA, and DRAM controllers. Note that some auxiliary
instructions are not list in the table, which are implemented
in DOMS. The whole DOE system consumes 328089 ALMs,
and 34004088 BRAM bits, which occupies 77% ALMs and
61% BRAM of whole FPGA on-chip resources respectively.

2) DRAM bandwidth Utilization: The DRAM bandwidth
utilization is a key metric for evaluating the database system,
which is the key optimization in this paper. Fig.7 shows
the bandwidth utilization of Conflux accelerator equipped

TABLE IV
RESOURCE CONSUMPTION IN FPGA CHIP

Systems [Number of ALMs (%) [Number of BRAM (%)
Selection 21383 (5%) 1%
Projection 8689 (2%) 1%
Groupby 16732 (4%) 2%
Aggregate 33689 (8%) 3%
Join 40960 (10%) 4%
Sort 39321 (9%) 5%
Treelndex 13100 (3%) 3%
Projection-random 21048 (5%) 2%
DOMS 30758 (7%) 6%
Synch system 7663 (2%) 3%
on-chip cache 1102 (<1%) 18%
control system 942 (<1%) 1%
Others 92702(22%) 12%
Total 328089 (77%) 61%

with PostgreSQL. DOE stably achieves over 60% DRAM
bandwidth utilization across most of queries. Two reasons con-
tribute to the superior DRAM bandwidth utilization: a) strong
parallelism-harvesting capability, and b) attractive random data
caching capability for join-like operations.

g

5100 g

j

S gt i

=

-]

£ 60

b

3 40

8

@ 20

2

5° 4
NDOFL LD D QO D,0,0 0,0 O N
SFFFFF TN FTETNNRAE RN XSG

Fig. 7. DRAM Bandwidth Utilization

3) Performance: Fig.8 shows the performance of DOE
(PostgreSQL database with Conflux accelerator), PostgreSQL,
and MonetDB. DOE provides more than 100x performance
speedup over PostgreSQL, and 10x over MonetDB across
most queries, except q9 and ql8. Proposed four optimiza-
tion mechanisms contribute to the superior performance of
DOE. Full DRAM bandwidth utilization, coupled with in-
place data exchange enable massively fine-grained parallelism.
The columnar database MonetDB achieve good performance
in the OLAP scenario. The join operations across multiple
tables decays the task-level parallelism, so DOE held a slender
lead than MonetDB in q9 and q18.

Execution Time

Fig. 8. Performance

VI. RELATED WORK

There are three common directions to explore the database
“offloading” approaches: (1) GPU-based methods. GPUs inte-
grated huge amount of cores become one of most popular

platforms for application accelerations, such as image pro-
cessing, scientific calculation, and models. However, using
GPU to accelerate some operations in DBMS only get limited
performance improvement [1]-[3]. (2) Customized hardwares
for basic SQL operations. To accelerate partial basic operations
in DBMS, various of subtle micro-architectures have been
proposed [4]-[9], [16]. To accelerator the whole operators in
DBMS, the ASIC-based Q100 and a domain-specific ISA were
proposed [8], [9]. It is a ponderable reference in the design of
independent programmable acceleration engines for database.
However, these works only focused on basic operators, but
ignore the consideration of system integration. (3) Customized
systems for a specific database. A whole database system were
proposed in [10] to optimize the original data format DBMS.
A column-based acceleration system were proposed in [11] to
optimized SSD accessing. Besides, some customized systems
were proposed to apply on distributed data processing systems
[14], [15]. However, these works only targeted at a specific
database system.

VII. CONCLUSIONS

We designed a whole stack database offloading system,
DOE. And, we proposed a flexible DOE programming plat-
form DP2, and designed an efficient Conflux accelerator
architecture. Our design provides more than 100x and 10x
performance improvement compared with PostgreSQL and
MonetDB respectively.

REFERENCES

[1] P. Bakkum and K. Skadron, “Accelerating sql database operations on a gpu with

cuda.” 2010, pp. 94-103.

C. Kim, J. Chhugani, N. Satish, E. Sedlar, and P. Dubey, “Fast: fast architecture

sensitive tree search on modern cpus and gpus,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2010,
Indianapolis, Indiana, USA, June 6-10, 2010.

[3] E. A. Sitaridi and K. A. Ross, “Gpu-accelerated string matching for database
applications,” The VLDB Journal, 2016.

[4] P. Vaidya and J. J. Lee, “A novel multicontext coarse-grained join accelerator
for column-oriented databases.” in International Conference on Engineering of
Reconfigurable Systems Algorithms, 2009.

[5] K. Kara and G. Alonso, “Fast and robust hashing for database operators,” in
International Conference on Field Programmable Logic Applications, 2016, pp.
1-4.

[6] Z. Zhou, C. Yu, S. Nutanong, Y. Cui, and C. J. Xue, “A hardware-accelerated
solution for hierarchical index-based merge-join(extended abstract),” in 2019 IEEE
35th International Conference on Data Engineering (ICDE), 2019.

[7]1 K. Manev, A. Vaishnav, C. Kritikakis, and D. Koch, “Scalable filtering modules
for database acceleration on fpgas,” in the 10th International Symposium, 2019.

[8] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “The q100 database
processing unit,” IEEE Micro, vol. 35, no. 3, pp. 1-1, 2015.

[9] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Brezzo, S. Asaad, and D. E.
Dillenberger, “Database analytics: A reconfigurable-computing approach,” IEEE
Micro, vol. 34, no. 1, pp. 19-29, 2014.

[10] B. Sukhwani, H. Min, M. Thoennes, P. Dube, and S. Asaad, “Database analytics
acceleration using fpgas,” 2012.

[11] S. Watanabe, K. Fujimoto, Y. Saeki, Y. Fujikawa, and H. Yoshino, “Column-
oriented database acceleration using fpgas,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE), 2019.

[12] G. Yan, W. Lu, X. Li, and N. Sun, “Comparative study of the domain-specific
processors” SCIENTIA SINICA Informationis 52.2:358-375,2022.

[13] G. Yan, X. Li, and N. Sun, "Study of design methodology of software-defined
accelerators” Communications of CCF 14.11:58-63, 2018.

[14] M. Hemmatpour, B. Montrucchio, M. Rebaudengo, and M. Sadoghi, “Analyzing
in-memory nosql landscape,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. PP, no. 99, pp. 1-1, 2020.

[15] M. Najafi, K. Zhang, M. Sadoghi, and H. A. Jacobsen, “Hardware acceleration
landscape for distributed real-time analytics: Virtues and limitations,” in ICDCS,
2017.

[16] M. Najafi, M. Sadoghi, and H.-A. Jacobsen, “Flexible query processor on fpgas,”
Proc. VLDB Endow., vol. 6, no. 12, p. 1310-1313, 2013.

[2

