
BOUNCE: Memory-Efficient SIMD Approach for
Lightweight Integer Compression

Juliana Hildebrandt
TU Dresden

Database Research Group
Dresden, Germany

juliana.hildebrandt@tu-dresden.de

Dirk Habich
TU Dresden

Database Research Group
Dresden, Germany

dirk.habich@tu-dresden.de

Wolfgang Lehner
TU Dresden

Database Research Group
Dresden, Germany

wolfgang.lehner@tu-dresden.de

Abstract—Integer compression plays an important role in
columnar database systems to reduce the main memory footprint
as well as to speedup query processing. To keep the additional
computational effort of (de)compression as low as possible, the
powerful Single Instruction Multiple Data (SIMD) extensions of
modern CPUs are heavily applied. While a scalar compression
algorithm usually compresses a block of N consecutive integers,
the state-of-the-art SIMD implementation scales the block size to
k∗N with k as the number of elements which could be simultane-
ously processed in an SIMD register. On the one hand, this scaling
SIMD approach improves the performance of (de)compression
but can lead to a degradation of the compression ratio compared
to the scalar variant on the other hand. Within this paper, we
analyze this degradation effect for an heavily applied and well-
performing integer compression algorithm called BitPacking (BP)
and present a novel SIMD concept to overcome that effect. Our
novel SIMD idea called BOUNCE is to concurrently compress k
different blocks of size N within SIMD registers achieving the
same compression rate as the scalar variant. As we are going to
show, our proposed SIMD idea works well for BP and may offer
a new generalized approach to optimize further algorithms.

Index Terms—integer compression, SIMD, memory-efficiency

I. INTRODUCTION

Cloud computing has become mainstream and we observe
that modern data analysis as well as management continues to
move to cloud environment. The biggest challenge for cloud
providers of data management solutions is to make efficient
use of the underlying hardware to reduce the overall costs.
This holds especially for in-memory database systems in the
cloud, because main memory is a driving factor for hardware
costs [1]. Thus, the optimization of main memory consumption
for base data as well as intermediate data during query process-
ing in these systems plays an important role [2], [3]. Generally,
this aspect has been an integral part of in-memory database
systems from the very beginning. For example, in-memory
column-stores encode every base column as a sequence of
integer values and the necessary memory space for storing
these integer sequences is reduced with the help of some
additional lightweight computations for integer compression.
Various works have shown that this drastically reduces the
main memory footprint [2], [4]. Moreover, these compressed
integer values also offer advantages for query processing [2],
[4], [5]. However, compression as well as decompression
requires additional computational effort.

To keep the computational effort as low as possible, the
Single Instruction Multiple Data (SIMD) extensions of modern
CPUs are heavily applied [6]–[8]. The SIMD objective is
to increase the single-thread performance by executing an
identical operation on multiple data elements in an SIMD
register simultaneously (data parallelism) [9]. The general
state-of-the-art SIMD approach for integer compression works
as follows: [8]: While a scalar compression algorithm would
compress a block of N consecutive integers, the state-of-the-
art SIMD approach scales this block size to k ∗N with k as
the number of integers that can be simultaneously processed
with an SIMD register. This scaling approach increases the
performance of (de)compression but can lead to a degradation
of the compression ratio compared to the scalar variant.

Our Contribution and Outline. In this extended paper
of [10], we analyze this degradation effect and present
an alternative SIMD concept called BOUNCE to overcome
that effect. For that, we mainly focus on a heavily-used
and well-performing representative integer compression called
BitPacking (BP). The idea behind BOUNCE is to concurrently
compress k different blocks of size N within SIMD registers
to achieve the same compression ratios as the scalar variant in
all cases. To present our memory-efficient BOUNCE concept,
the rest of the paper is structured as follows: In Section II,
we briefly summarize the state-of-the-art and we theoretically
analyze the degradation effect for BP. Then, we present our
alternative SIMD concept BOUNCE in Section III. We (i) in-
troduce the general idea, (ii) describe the application to BP and
discuss one specific optimization aspect. Section IV presents
representative evaluation results. Finally, we discuss related
work in Section V and present a summary in Section VI.

II. ANALYZING STATE-OF-THE-ART

The objective of lossless, lightweight integer compression
algorithms is to represent a sequence of finite integer values
with as few bits as possible [6]–[8]. Over the past decades, a
large corpus of different algorithms has evolved [6]–[8]. The
algorithms have in common that the compressed representation
for blocks of integer values often consists of control patterns
and data snips [8]. Data snips represent the compressed
integers in binary format, while control patterns store the
auxiliary information to interpret the data snips.

SIMD Concurrent Compression
(SIMD register size k=4)

State-of-the-art SIMD Compression
(SIMD register size k=4)

Scalar Compression
(Block size N=4)

C D

C D

C D

C D

C D

D

C C C C

D D D

compress

compress

compress

compress

compress
compress

input sequence

Block 1

Block 2

Block 3

Block 4

compressed
representation

k-way
scaled
Block
(k*N)

concept
- scaling of block size with

the SIMD register size k
- applying compression on

scaled block
Our novel concept
- lane-wise compression of

blocks with size N
- concurrent compression of

k blocks Legend
C = control pattern
D = data snip

1 2 3 4Block

Fig. 1: Overview of compression processing concepts.

A. Scalar BitPacking

In this paper, we focus on BitPacking (BP) as a heavily
used and well-performing integer compression algorithm [7].
BP belongs to the class of null suppression algorithms by
omitting leading zero bits [7]. This type of compression is,
for example, the basis to efficiently execute scans [11], [12].
The scalar version of BP for 64-bit integer values is called
BP64 and works as follows: The input sequence of integer
values is subdivided into blocks of 64 integers each. For each
block, the minimal number of bits required for the largest
element is determined. Then, all 64 integers in each block are
stored in a data snip with the respective number of bits for each
value. The used bit width is stored in a single 64-bit integer as
control pattern. Other scalar compression algorithms operate
in a similar way and Fig. 1 gives a schematic overview of this
procedure with a block size of four.

B. State-of-the-art SIMD Approach

The state-of-the-art SIMD approach for integer compression
is characterized by the fact, that (i) the block size is scaled
by the SIMD register size k – k is the SIMD register size
in number of integer values – and (ii) the application of the
compression on this larger block sizes as depicted in Fig. 1 [8].
For example, SIMD-BP256 is the SIMD implementation of
BP64 for SIMD register sizes of 256-bits. Here, we are able
to store and process 4 64-bit integer values at once, so that
the block size is scaled by k = 4. Based on that, the k-way
scaled SIMD block contains 256 integer values and for these
elements, the minimal number of bits required for the largest
element is determined. Then, all 256 integers in each block
are stored in a data snip with that many bits for each value
and the used bit width is stored as common control pattern.
The compressed values in the data snips are organized using a
k-way vertical layout distributing N consecutive integers to k
different groups [7]. SIMD-BP256 offers superior performance
compared to other compression algorithms [7]

C. Analyzing Memory Footprint

A main drawback of the k-way scaling is that the compres-
sion factor

cf(k) =
|k-way compressed data|
|uncompressed data| (1)

mostly increases with an increasing SIMD register and block
size. On the one hand, fewer control patterns need to be stored
due to larger block sizes. On the other hand, a number of
larger integer values may be compressed with a larger bit
width. To precisely analyze this effect, we derive the expected
compression factor for different integer bit width distributions.

Our analysis framework works as follows: The scalar al-
gorithm BP64 encodes blocks of 64 64-bit values with the
least possible common bit width and the bit width as control
pattern itself with 64 bits. The SIMD-based implementations
with SIMD register size k encode 64 · k values with the
same approach. Given is a data distribution for 64-bit integer
values characterized by the probability for the bit widths
0 ≤ b ≤ 64 : p(b) and an SIMD register size k. Now, we can
distinguish 65 cases corresponding to blocks of 64 · k values
that are encoded with bit width 0 ≤ b ≤ 64. Each of these
cases (i) occurs with a probability p′(b, k), which depends on
the given data distribution and the SIMD register size k, and
(ii) is characterized by a block compression factor cf ′(b, k).
The expected compression factor for a k-way SIMD-based
implementation of BP can be calculated by

cf(k) =

64∑
b=0

p′(b, k) · cf ′(b, k). (2)

The block compression factor cf ′(b, k) is given by

cf ′(b, k) =
|k-way compressed block|
|uncompressed block|

=
1 + b · k
64 · k (3)

and the block probability can be derived by the following
consideration. The probability of the occurrence of a block of
size 64 · k containing only zero values is p′(0, k) = p(0)64·k.
The probability of a block encoded with one of the bit

widths 0 ≤ b is
(∑b

bw=0 p(bw)
)64·k

. The probability for
the occurrence of a block encoded with bit width b is the
difference of the above probability and all probabilities for
the occurrences of blocks with a smaller bit width than b:

p′(b, k) =

(
b∑

bw=0

p(bw)

)64·k

−
b−1∑
bw=0

p′(bw, k). (4)

For the compressed size ratio between a k-way SIMD imple-
mentation and the scalar implementation of BP, we calculate
cf(k)
cf(1) with cf(1) corresponding to the scalar compression
factor (scaling factor k = 1).

In the following, we apply these formulas on two different
data distributions where most integer values are characterized
by a bit width of 2, but we also have a probability x for
integer values with a larger bit width. While in the first case
the larger bit width is 3, the bit width in the second case
is 60. Fig. 2a and Fig. 2b depict the compressed size ratio
cf(k)
cf(1) , k = {2, 4, 8, 16, 32} for the SIMD implementations for
both cases and different probabilities. As we can observe in
Fig. 2a, all lines are below 1 for case one with a larger bit
width of 3. That means, each SIMD implementation (using
different k-way scalings) has a lower compression factor than

(a) Bit widths 2 and 3 with varying prob-
ability p(3).

(b) Bit widths 2 and 60 with varying
probability p(60).

(c) Varying larger bit widths bw and
p(bw) = 0.001.

Fig. 2: Theoretical analysis results comparing scalar and state-of-the-art SIMD implementations for BP.

the scalar algorithm. Thus, the memory footprint is further
optimized compared to the scalar variant. The reason is the
lower number of control patterns for larger blocks and the
more or less homogeneous bit widths for all integer values.
Moreover, the value k for the best SIMD implementation
yielding the best compression ratio depends on the probability
of the larger bit width.

In contrast to that, for the second case with the larger bit
width of 60 and lower outlier probabilities, we see that all
lines are above 1 (cf. Fig. 2b). This means, the compression
ratio of the scalar variant is much better than of the SIMD
implementations. For example, a compressed representation
of 8-way SIMD implementation – SIMD register size 512-
bit with 64-bit integer values – is 4 times larger than for the
scalar variant. Those disturbing effects happen and destroy the
advantages of the SIMD-based integer compression, especially
since a small number of outliers has such large effects.

Finally, we examined a variety of larger bit widths with
a fixed probability of p = 0.001 and different values of k.
Again, most integers are characterized by a bit width of 2.
As we can see in Fig. 2c, the memory footprint of the SIMD
compression is significantly worse than for the scalar variant
in most of the situations. And the factor grows with increasing
larger bit widths and vector sizes k.

III. MEMORY-EFFICIENT SIMD CONCEPT

Our analysis has shown that the state-of-the-art SIMD
approach has shortcomings from a memory footprint point
of view. To overcome that, we propose an alternative SIMD
concept called BOUNCE, explain the application to BP, and
discuss a specific optimization in this section.

A. Block Concurrent SIMD Concept

Instead of scaling the block size by the SIMD register size k,
we propose a block concurrent compression concept BOUNCE
as alternative SIMD approach as depicted in Figure 1. In
BOUNCE, each SIMD register place – also called SIMD
lane – compresses its own data block. Thus, the number of
available SIMD lanes determines the number of blocks that
will be compressed simultaneously. The advantages are (i)
the same block size of the scalar compression algorithms is
maintained and (ii) the control patterns as well as data snips
are calculated lane-wise. That means, we apply the scalar
compression algorithm on each SIMD lane on different data

Block Concurrent SIMD Compression
(Block size N=64; SIMD register size k=4)

Postprocessing
(Store-Phase)

Compression Computation
(Compute-Phase)

Preprocessing
(Load-Phase)

Finite Sequence
of Integer Values

0

1

…

63

64

65

…

127

128

129

…

191

192

193

…

255

Gather Scatter

Compressstore

Task
Preparing SIMD registers
for the block concurrent
compression computation

Task
Lane-wise computation of
control patterns and data
snips for each data block
concurrently

Task
Writing compressed
representation to the output

Pos

Fig. 3: Block concurrent BP compression.

blocks concurrently. Thus, we are able to guarantee the same
compression ratios as the scalar variant in all cases.

B. Application to BP

Compression. The BP compression with BOUNCE is illus-
trated in Fig. 3. Here, we assume integer values of size 64-bit,
which will be compressed with the scalar variant BP64. The
assumed SIMD register size k is 8, so that eight different
data blocks of 64 values are compressed simultaneously.
That means, we are processing 512 integer values in total
of the input sequence of integer values and compute eight
control patterns and data snips as compressed output. The BP
compression is done in two phases, thereby each phase iterates
over all 512 integer values. In the first phase, the bit width of
the largest integer value within each block is determined, while
the second phase uses the determined bit widths to shorten the
values accordingly and to write out the compressed output.

As shown in Fig. 3, we distinguish (i) a preprocessing step
to load the data from the input into the vector registers, (ii) a
computation step to shorten the values, and (iii) a postprocess-
ing step to write the data into the output area. These steps are
executed in each phase and each phase executes 64 iterations
for 64 values per block. That means, for the nth iteration,
we require the integer value of the nth position of each
considered data block in the SIMD register. Assuming that the
input sequence contains correct ordered data (horizontal data
layout), we simply could use an SIMD-gather instruction
to load the corresponding values of the different data blocks
into the SIMD register. The SIMD-gather seems to be
expensive, because it can be used for random memory access.

(a) Xeon Phi 7250 (b) Xeon Gold 6126 (Skylake) (c) Xeon Gold 6240R (Cascade Lake)

Fig. 4: Evaluating best-performing stride distance for AVX-512 (64-bit) on different Intel hardware platforms.

However, in our case, we realize a block-strided access pattern
with a distance of 64.

In the computation step, we apply the appropriate SIMD
functions for each phase. In the first phase, we apply the
SIMD functions to compute the number of leading zeros for
the largest value per lane (per block). Based on the number
of leading zeros, we compute the minimal number of bits
for the compression. This bit widths are used in the second
phase to concatenate the shortened data values while using an
appropriate SIMD-bitshifting instruction, which can be applied
for each lane individually. Because in the single lanes, the
data is concatenated with a different bit width, the lanes
are filled at different loop passes. For example, a lane is
full after 2 iterations for a bit width of 30 (assuming 64
bit integer values), but for a bit width of 2, we need 32
iterations to fill a lane. In any case, if one of the lanes is
full, it has to be written to the output (postprocessing step).
Here, we see two alternatives. The first alternative is to use an
SIMD-compressstore instruction to consecutively write
out lanes as soon as they are full. In this case, data snips of
the different blocks are intertwined. The second alternative is
to use an SIMD-scatter instruction. Since the bit width for
each block is determined at first, the bit widths can also be
used to calculate the position for each full lane in the output.
In this case, we are able to organize the data snips for each
of them in a consecutive manner.

Decompression. The decompression routine of BOUNCE
can be built nearly straightforward the other way around. The
preprocessing starts with loading of the control patterns by
the application of an SIMD-load intruction and they are
required for the correct decompression. For the preprocessing
of the compressed values, the instructions complementary
to SIMD-gather and SIMD-compressstore – namely
SIMD-scatter and SIMD-expand – are applied to load
the compressed data snips into the vector registers. During
the decompression computation step, the compressed data
snips are expanded to 64-Bit integers by prepending leading
zeros. For the postprocessing, an SIMD-scatter instruc-
tion complementary to the SIMD-gather in the prepro-
cessing phase of the compression is applied. For simplicity,
the gather/scatter alternative might be preferred. The
compressstore/expand requires a calculation intensive

mapping from consecutive compressed data to the different
lanes. This can be avoided by decompressing the data from the
last to the first value – at any point in time one or several lanes
are discharged, the next one or several 64-bit words holding
compressed data are accessed via SIMD-expand and loaded
in the discharged lanes.

C. Optimization
A drawback of our BOUNCE concept may be the utilization

of expensive SIMD instructions like gather, scatter, or
compressstore. Thus, the performance will probably be
worse compared to the state-of-the-art SIMD approach. To
overcome that, there are enough optimization knobs, hence
we haven taken a closer look at one knob as an example.

For the BOUNCE-BP compression, the integer values from
different memory regions must be loaded twice into vector
registers using gather instructions. In contrast to that, the
state-of-the-art SIMD approach also loads values twice but al-
ways consecutively by means of a load instruction. However,
a special feature of our approach is that we realize a block-
strided access pattern with the gather, whereby the stride
distance is 64. That means – for vector length of k = 4 –, the
first vector register is filled with integer values at positions 0,
64, 128 and 192. Then, the integers at positions 1, 65, 129,
and 193 are loaded and so on. The stride distance does not
necessarily have to be 64, but must be a multiple of 64 and
thus represents an optimization knobs.

In these micro-benchmarks, we executed a sum-aggregation
(mainly to focus on reading with little computation and one
write operation with the sum at the end) over a 4 GiB input ar-
ray of randomly generated 64-bit unsigned integer values. We
implemented this sum-aggregation in C++ as a scalar variant,
as a SIMD variant using the load instruction (linear access
pattern), and as a SIMD variant using the gather instruction
with a variable stride distance. We compiled the variants
using g++ (version 9.3.0) with the optimization flags -O3
-fno-tree-vectorize -mavx512f -mavx512cd.

We executed these micro-benchmarks using AVX-512 on
different Intel platforms as depicted in Table I and the results
are shown in Fig. 4. All micro-benchmarks are executed
single-threaded, happened entirely in-memory, were repeated
10 times, and we averaged the results. In the diagrams, the
stride distance or stride size in bytes is plotted in log scale on

(a) Compression ratio (b) Compression speed (c) Decompression speed

Fig. 5: Experimental results for data sets with fixed bit widths.
Processor Type L1 L2 L3 Main

Cache Cache Cache Memory
Xeon Phi 7250 32KiB 1MiB - 204GB
Xeon Gold 6126 32KiB 1MiB 19MiB 92GB
Xeon Gold 6240R 32KiB 1MiB 35.75MiB 384GB

TABLE I: Hardware platforms with cache information.

the x-axis, while the y-axis shows the throughput in GB/s. As
we can see, the curves are similar on the different platforms.
The scalar variant achieves always the slowest throughput,
while the SIMD with the linear access pattern always achieves
the best throughput (expected behavior). The gather-variant
is in one stride distance range much worse than the scalar
variant, but for certain stride distances it comes very close to
the SIMD-variant with the linear access pattern. Especially,
a stride distance of 64 values (512 Bytes) is in the very
unfavorable range, where the achievable throughput is much
lower compared to the scalar variant. However, very good
throughput values are achieved for the stride distances of 512
values (4096 Bytes). These well-performing stride distances
match the page size of 4KB, so that all SIMD lanes in
BOUNCE load integer values from different pages that are
cached after the first access and thus can be accessed optimally
afterwards. We conclude, we should use a stride distance of
512 instead of 64 for BOUNCE. In this case, each SIMD lane
operates on its own page containing 512 values and then 64
values — one after the other — are compressed with BP64.

IV. EVALUATION

To evaluate whether and when our BOUNCE concept for
BP is suitable, we implemented BP for 64-bit integer values
in its scalar form (denoted as BP64), and compared it with
the state-of-the-art SIMD approach (called SIMD-BP512)1 and
with our novel BOUNCE concept (denoted as BOUNCE-BP)
using Intel’s latest SIMD extension AVX-512. For all variants,
we implemented the compression as well as decompression
routines. For BOUNCE (k = 8), we implemented all possible
variants as described in Section III, but the evaluation in
this paper focuses only on the variant using SIMD-gather
and SIMD-scatter instructions. The state-of-the-art SIMD

1Both implementations for 64-bit integers are inspired by existing
implementations of Daniel Lemire for 32-bit integers published on Github:
https://github.com/lemire/LittleIntPacker/blob/master/src/bitpacking32.c,
https://github.com/lemire/simdcomp/blob/master/src/avx512bitpacking.c

implementation uses SIMD-load and SIMD-store oper-
ations with a block scaling factor of k = 8. We used the
same compiler and optimization flags as described in the
previous section. We ran this evaluation on an Intel Xeon
Gold 6240R (Cascade Lake architecture) with 768 GB main
memory capacity (cf. Table I). All experiments are executed
single-threaded, happened entirely in-memory, were repeated
10 times, and we averaged the results. In all cases, we report
the compression ratio2 and the performance in million integers
per second (mis) for the (de)compression, so that higher values
are always better.

Data sets with fixed bit widths. In the first set of experi-
ments, we created different synthetic data sets with randomly
generated unsigned integer values. Each data set only contains
values of a fixed bit width. Then, we applied all compression
as well as decompression routines and the results are shown in
Fig. 5. As we can see in Fig. 5a, these data sets are perfectly
suited for the state-of-the-art SIMD approach, because they
achieve higher compression ratios and higher performance
for compression as well as decompression. However, the
BOUNCE BP compression implementation (cf. Fig 5b) with a
stride distance of 512 closely matches the performance of the
state-of-the SIMD approach, while a stride distance of 64 has
similar performance to the scalar variant. This clearly shows
that the optimization of the stride distance is very important.
Decompression speeds as illustrated in Fig. 5c are all in the
same range, with the BOUNCE implementation being slowest
for small bit widths. However, the BOUNCE decompression
routines are not optimized yet.

Data sets with different bit widths. In the second set of
experiments, we created synthetic different data sets similar
to the setting in Section II. That means, the integer values
are mainly characterized by a bit width of 2, but we have a
probability of p(bw) = 0.001 for integer values with a larger
bit width bw. We varied this larger bit width bw from 3 to 64
for the data sets and the results are shown in Fig. 6. As we can
see in Fig. 6a, the BOUNCE-BP compression achieves much
higher compression ratios resulting in a smaller compressed
output. Since we have to write out less, the performance for
compression also improves as depicted in Fig. 6b. In this case,
BOUNCE-BP with a stride distance of 512 clearly outperforms

2compression ratio is computed by |uncompressed|
|compressed|

(a) Compression ratio (b) Compression speed (c) Decompression speed

Fig. 6: Experimental results for data sets with a mix of two different bit widths.

the state-of-the-art SIMD implementation and the speedup
increases with increasing bit widths. Moreover, BOUNCE-BP
with a stride distance of 64 is slightly better than the scalar
variant which shows again the importance of the stride distance
optimization. The decompression performance is similar to the
previous set of experiments as the decompression is not opti-
mized yet. To summarize, our evaluation results are promising
and encourage further research towards the generalization of
BOUNCE for further compression algorithms.

V. RELATED WORK

A comprehensive overview of the field of lossless
lightweight integer compression algorithms and SIMD imple-
mentations is given by the following papers [6]–[8], [13].
In addition to that, we presented a meta-model to specify
integer compression algorithms in a descriptive and abstract
way with the ability to derive executable code from that
description [14]. An integration of our presented generalized
SIMD approach into the transformation to the executable code
is in the focus of our ongoing research activities. Moreover,
the selection of the best-fitting integer compression variant is
a research field with a very dynamic development [5], [6].
With our alternative generalized SIMD approach BOUNCE,
we extend the variety of variants increasing the importance
of the selection. From a SIMD execution point of view, our
presented BOUNCE concept is in line with the idea of sharing
vector registers for concurrently running queries as described
in [15]. Nevertheless, the application as well as the specific
challenges differ. However, both approaches show that an
alternative use of SIMD execution can be profitably employed.

VI. CONCLUSION

Integer compression plays an important role to reduce
the memory footprint and to speedup query processing in
column-stores. While a scalar compression algorithm usually
compresses a block of N consecutive integers, the state-of-the-
art SIMD implementation usually scales the block size to k ·N
with k as the number of elements that could be simultaneously
processed in a SIMD register. However, this means that as
the SIMD register size increases, the block of integer values
for compression also grows, which can have a negative effect
on the compression ratio. In this paper, we analyzed this
effect and showed that the compressed output could be many

times larger than the result of a scalar implementation. To
overcome that, we presented an alternative SIMD concept
called BOUNCE which concurrently compress k different
blocks of size N within SIMD registers of size k. Due to
the promising results for the heavily used integer compression
representative BitPacking, we want to intensify our work in
this area. In particular, we will further optimize our concept in
combination with investigating different integer compression
algorithms. In general, BOUNCE can lead to more responsible
usage of main memory resources which is necessary for cloud
environments.

REFERENCES

[1] D. Lomet, “Cost/performance in modern data stores: How data caching
systems succeed,” in DaMoN, 2018, pp. 1–10.

[2] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating compression and
execution in column-oriented database systems,” in SIGMOD, 2006, pp.
671–682.

[3] L. Landgraf, F. Wolf, A. Boehm, and W. Lehner, “Memory efficient
scheduling of query pipeline execution,” in CIDR, 2022.

[4] P. Damme, A. Ungethüm, J. Pietrzyk, A. Krause, D. Habich, and
W. Lehner, “Morphstore: Analytical query engine with a holistic
compression-enabled processing model,” Proc. VLDB Endow., vol. 13,
no. 11, pp. 2396–2410, 2020.

[5] M. Boissier and M. Jendruk, “Workload-driven and robust selection of
compression schemes for column stores,” in EDBT, 2019, pp. 674–677.

[6] P. Damme, A. Ungethüm, J. Hildebrandt, D. Habich, and W. Lehner,
“From a comprehensive experimental survey to a cost-based selection
strategy for lightweight integer compression algorithms,” ACM Trans.
Database Syst., vol. 44, no. 3, pp. 9:1–9:46, 2019.

[7] D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” Softw. Pract. Exp., vol. 45, no. 1, pp. 1–29, 2015.

[8] W. X. Zhao et al., “A general simd-based approach to accelerating
compression algorithms,” ACM Trans. Inf. Syst., vol. 33, no. 3, pp. 15:1–
15:28, 2015.

[9] C. J. Hughes, Single-Instruction Multiple-Data Execution, ser. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers,
2015.

[10] J. Hildebrandt, D. Habich, and W. Lehner, “Towards a general simd
concurrent approach to accelerating integer compression algorithms,” in
EDBT Short Paper, 2022.

[11] Y. Li and J. M. Patel, “Bitweaving: fast scans for main memory data
processing,” in SIGMOD, 2013, pp. 289–300.

[12] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner, “Simd-scan: Ultra fast in-memory table scan using on-chip
vector processing units,” PVLDB, vol. 2, no. 1, pp. 385–394, 2009.

[13] P. Damme, D. Habich, J. Hildebrandt, and W. Lehner, “Lightweight
data compression algorithms: An experimental survey (experiments and
analyses),” in EDBT, 2017, pp. 72–83.

[14] J. Hildebrandt, D. Habich, P. Damme, and W. Lehner, “Model kit for
lightweight data compression algorithms,” in EDBT, 2016, pp. 692–693.

[15] J. Pietrzyk, D. Habich, and W. Lehner, “To share or not to share vector
registers?” in DaMoN, 2020, pp. 12:1–12:10.

