
Analysis of GPU-Libraries for Rapid Prototyping
Database Operations

A look into library support for database operations

Harish Kumar Harihara Subramanian Bala Gurumurthy Gabriel Campero Durand
David Broneske Gunter Saake

University of Magdeburg
Magdeburg, Germany

firstname.lastname@ovgu.de

Abstract—Using GPUs for query processing is still an ongoing
research in the database community due to the increasing
heterogeneity of GPUs and their capabilities (e.g., their newest
selling point: tensor cores). Hence, many researchers develop
optimal operator implementations for a specific device generation
involving tedious operator tuning by hand. On the other hand,
there is a growing availability of GPU libraries that provide
optimized operators for manifold applications. However, the
question arises how mature these libraries are and whether they
are fit to replace handwritten operator implementations not only
w.r.t. implementation effort and portability, but also in terms of
performance.

In this paper, we investigate various general-purpose libraries
that are both portable and easy to use for arbitrary GPUs
in order to test their production readiness on the example of
database operations. To this end, we develop a framework to
show the support of GPU libraries for database operations that
allows a user to plug-in new libraries and custom-written code.
Our experiments show that the tested GPU libraries (ArrayFire,
Thrust, and Boost.Compute) do support a considerable set
of database operations, but there is a significant diversity in
terms of performance among libraries. Furthermore, one of the
fundamental database primitives – hashing and, thus, hash joins
– is currently not supported, leaving important tuning potential
unused.

Index Terms—GPU-based DBMS, GPU-accelerated DBMS,
GPU-libraries, Performance comparison

I. INTRODUCTION

GPUs are common co-processors of a CPU mainly used for
offloading graphical computations. Recently, GPUs are also
used for offloading general-purpose computations including
database operators. In order to get maximum performance,
researchers have adapted database operators for GPUs creating
a plethora of operator implementations, e.g., group-by [1], [2],
selections [3], [4], joins [5], [6], or whole engines [7]–[9].

Developing such tailor-made implementations requires a
developer to be an expert on the underlying device [10]. This
makes the approach highly time-consuming but leads to the
best performance [11]. As an alternative, many expert-written
libraries are available that can be included into a system
needing only minimal knowledge about the underlying device.

This work was partially funded by the DFG (grant no.: SA 465/51-1 and
SA 465/50-1.)

Usually, library operators for GPUs are either written by
hardware experts [12] or are available out of the box by device
vendors [13]. Overall, we found more than 40 libraries for
GPUs each packing a set of operators commonly used in one
or more domains. The benefits of those libraries is that they are
constantly updated and tested to support newer GPU versions
and their predefined interfaces offer high portability as well as
faster development time compared to handwritten operators.
This makes them a perfect match for many commercial
database systems, which can rely on GPU libraries to imple-
ment well performing database operators. Some example for
such systems are: SQreamDB using Thrust [14], BlazingDB
using cuDF [15], Brytlyt using the Torch library [16].

Since these libraries are an integral part of GPU-accelerated
query processing, it is imperative to study them in detail.
To this end, we investigate existing GPU-based libraries
w.r.t. their out-of-the-box support of usual column-oriented
database operators and analyze their performance in query
execution. Hence, we survey available GPU libraries and focus
on the three most commonly used GPU libraries: Thrust,
Boost.compute, and ArrayFire to study their support for
database operators. Specifically, we explore available opera-
tors to determine the library’s level of support for database
operators and we present which library operators can be used
to realize the usual database operators. Using these imple-
mentations, we benchmark the libraries based on individual
operator performance as well as their execution of a complete
query. Overall in this work, we make contributions to the
following two directions in order to assess the usefulness of
GPU libraries:

• Usefulness: We look for libraries with tailor-made im-
plementations for database operators. As a result, we can
assess the ad-hoc fit of the libraries for database system
implementation (cf. Table II).

• Usability: We analyze the performance of the different
library-based database operators in isolation as well as for
queries from the TPC-H benchmark. This is a key crite-
rion for deciding which library to use for a developer’s
own database system (cf. Section IV).

Low-level languages

Specialized wrappers

Libraries

Low

High

Level of expertise

Development time

Optimization capability

Flexibility

Fig. 1: Hierarchy of abstraction levels characterizing lan-
guages, wrappers, and libraries for heterogeneous computing

The paper is structured as follows: In Section II, we classify
existing languages and libraries for heterogeneous program-
ming. We review existing GPU libraries and identify how
to use them to implement database operators in Section III.
In Section IV, we compare the performance of library-based
database operators. Finally, we conclude in Section V.

II. LEVELS OF PROGRAMMING ABSTRACTIONS

For more than a decade now, the database community has
been investigating how to use GPUs for database process-
ing [17]. In fact, the interest for GPU-acceleration is mainly
due to the advancements in its processing capabilities as
well as the maturity in programming interfaces and libraries.
However, for most practitioners it is hard to assess the impact
of choosing a specific interface or library. To shed some light
on the matter, we compare and review current programming
interfaces and libraries. As a result, we broadly categorize
them w.r.t. their abstraction level: languages, wrappers and
libraries. We place them as a hierarchy since each entity in
a level is developed using the lower level constructs. Our
Figure 1 shows examples of these identified levels, which we
characterize in the following.

Low-Level Languages: At the bottom of the hierarchy,
we place device-specific languages. These languages include
certain hardware intrinsics, which allows users to access
specialized features of the underlying hardware. Such intrin-
sics are commonly provided by the device vendor and are
combined with general purpose programming languages (e.g.,
C++, ASM). An example of this level are the SSE intrinsics1

that allow to use SIMD features in modern CPUs [18].
Similar to CPUs, NVIDIA provides its own proprietary API
CUDA that provides specialized access to NVIDIA GPUs.
For example, CUDA 7.0 and above supports accessing tensor
cores. Although these languages grant direct access to the
underlying hardware, a developer has to be an expert of the
used device architecture to implement a highly optimized
operator. Furthermore, changing the device or upgrading to a
newer version of the same device might lead to additional re-
work of the implementations using, for instance, new available
intrinsics (e.g., switching from SSE to AVX-512). Therefore,
using such low-level languages might improve efficiency but
comes with the drawback of high development cost (including

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/

a usually large size of program code) and requires expertise
on the device features.

Specialized Wrappers: To ease high implementation ef-
fort when using low-level languages, wrappers have been
developed to hide performance-centric details that a wrapper
can handle automatically. To be used, wrapper-specific con-
structs are added to the source code that will be expanded
automatically during execution. One popular example for a
wrapper is OpenCL, which offers a set of common constructs
for all OpenCL-enabled devices. A program developed using
these constructs will be rewritten during compilation based on
the target device. Some other examples are: OpenMP [19],
Cilk [20] for handling parallelism in CPUs, or oneAPI2 as
Intel’s newly pitched wrapper for hardware-oblivious program-
ming on CPUs, GPUs and FPGAs. Although these abstractions
significantly reduce the implementation effort compared to low
level languages, they are also susceptible to device changes.
For example, OpenCL can provide only device portability, but
not performance portability [3], [21], [22].

Libraries: At last, there is a plethora of pre-written libraries
developed by domain and hardware experts for different de-
vices [23]. Using a library, all internal details of different
operator implementations are hidden behind a set of predefined
interfaces. Hence, the developer must simply do the right
function call based on the underlying scenario. This requires
only minimal knowledge on the underlying hardware and
implementation. Some examples of libraries include the boost
libraries in C++ and the Thrust library for GPUs. Even
though these libraries are developed by experts, they are not
tailor-made for one underlying use-case. Hence, although a
generic implementation of operators suit multiple uses-cases,
they can be sub-optimal compared to handwritten use-case-
specific implementations. Furthermore, due to the predefined
interfaces for operators, one cannot freely combine them for
a custom scenario. Instead, we have to chain multiple library
calls leading to unwanted intermediate data movements. Thus,
libraries provide high productivity in development with only
small necessary knowledge about the underlying device (plus,
minimal lines of code) but they come with the drawback
of potentially sub-optimal performance from the operator
implementations.

Used Abstraction Levels in Database Systems: Various
GPU-accelerated database systems are developed using the
concepts of different levels. Considering low-level languages,
GPUQP [17], CoGaDB [7], and the system of Bakkum et
al. [4] use CUDA. For wrappers, Ocelot [8], HAWK [24]
are implemented in OpenCL. Finally, many commercial
database systems use libraries to realize operators, such as
SQreamDB [14] or BlazingDB [15], mainly for their robust-
ness and strong vendor support.

Disregarding their low flexibility, libraries give considerable
advantages for ad-hoc development of a GPU-accelerated
database system reducing its development cost to an acceptable
limit. However, with multiple GPU libraries being available,

2https://www.oneapi.com/

the question remains what library has the best support for
a rapid prototyping of database operators and which library
implementation achieves the best performance.

III. IMPLEMENTING DBMS OPERATORS WITH LIBRARIES

In this section, we review different GPU libraries and assess
their ad-hoc usability for implementing database operators. To
this end, from the selected libraries, we discuss the level of
support and the offered functions to realize database operators
using these GPU libraries.

A. Review of GPU Libraries

To collect available GPU libraries, we conduct an extensive
survey using google, google scholar, and the CUDA website3.
We look for libraries built on top of the two low-level
languages: CUDA (for NVIDIA GPUs) and ROCm (for AMD
GPUs), and the two wrappers OpenCL and OneAPI. However,
ROCm is itself built over OpenCL, making its performance
similar to OpenCL [25]. OneAPI is still in its early stages and
not all GPUs are supported at the moment. This shortens our
search to libraries over OpenCL and CUDA.

In total, we found 43 libraries that provide GPU-accelerated
operators for various domains. The details about the libraries
are listed in Table I.

Library Wrapper/Language Use case Reference

AmgX CUDA Math https://developer.nvidia.com/amgx

ArrayFire CUDA & OpenCL Database operators https://developer.nvidia.com/arrayfire

Boost.Compute OpenCL Database operators [26]

CHOLMOD CUDA Math https://developer.nvidia.com/CHOLMOD

cuBLAS CUDA Math https://developer.nvidia.com/cublas

CUDA math lib CUDA Math https://developer.nvidia.com/cuda-math-library

cuDNN CUDA Deep learning https://developer.nvidia.com/cudnn

cuFFT CUDA Math https://developer.nvidia.com/cuFFT

cuRAND CUDA Math https://developer.nvidia.com/cuRAND

cuSOLVER CUDA Math https://developer.nvidia.com/cuSOLVER

cUSPARSE CUDA Math https://developer.nvidia.com/cuSPARSE

cuTENSOR CUDA Math https://developer.nvidia.com/cuTENSOR

DALI CUDA Deep learning https://developer.nvidia.com/DALI

DeepStream SDK CUDA Deep learning https://developer.nvidia.com/deepstream-sdk

EPGPU OpenCL Parallel algorithms [27]

FFmpeg CUDA Image and video https://developer.nvidia.com/ffmpeg

Goopax OpenCL Parallel algorithms https://www.goopax.com/

Gunrock CUDA Others - Graph processing https://github.com/gunrock/gunrock

HPL OpenCL Parallel algorithms & Math https://github.com/fraguela/hpl

IMSL Fortran Numerical Library CUDA Math https://developer.nvidia.com/imsl-fortran-numerical-library

Jarvis CUDA Deep learning https://developer.nvidia.com/nvidia-jarvis

MAGMA CUDA Math https://developer.nvidia.com/MAGMA

NCCL CUDA Communication libraries https://developer.nvidia.com/nccl

nvGRAPH CUDA Parallel algorithms https://developer.nvidia.com/nvgraph

NVIDIA Codec SDK CUDA Image and video https://developer.nvidia.com/nvidia-video-codec-sdk

NVIDIA Optical Flow SDK CUDA Image and video https://developer.nvidia.com/opticalflow-sdk

NVIDIA Performance Primitives CUDA Image and video https://developer.nvidia.com/npp

nvJPEG CUDA Image and video https://developer.nvidia.com/nvjpeg

NVSHMEM CUDA Communication libraries https://developer.nvidia.com/nvshmem

OCL-Library OpenCL Database operators https://github.com/lochotzke/OCL-Library

OpenCLHelper OpenCL Others - wrapper https://github.com/matze/oclkit

OpenCV CUDA Image and video https://developer.nvidia.com/opencv

SkelCL OpenCL Database operators & Parallel algorithms [28]

TensorRT CUDA Deep learning https://developer.nvidia.com/tensorrt

Thrust CUDA Database operators [13]

Triton Ocean SDK CUDA Image and video https://developer.nvidia.com/triton-ocean-sdk

VexCL OpenCL Others - vector processing https://github.com/ddemidov/vexcl

ViennaCL OpenCL Math http://viennacl.sourceforge.net/

TABLE I: Libraries and their properties based on our survey

As GPUs are fundamentally a graphics machine, their
parallel processing is perfect for number crunching. Hence,
many libraries focus on image processing (7) and math opera-
tions (13). Since GPUs were just recently adopted for machine
learning workloads4, only comparatively few libraries are
currently available. In case of database operators, libraries that

3https://developer.nvidia.com/CUDA-zone
4https://developer.nvidia.com/tensor-cores

Database operators
ArrayFire Boost.Compute Thrust

Support Function Support Function Support Function

Selection + where(operator()) ~ transform() &
exclusive_scan() &

gather()
~ transform() &

exclusive_scan() &
gather()

Nested-Loops
Join – – + for_each_n() + for_each_n()

Merge Join – – – – – –

Hash Join – – – – – –

Grouped Aggregation + sumByKey(),
countByKey(), + reduce_by_key() + reduce_by_key()

Conjunction &
Disjunction + setIntersect(),

setUnion() + bit_and<T>(),
bit_or<T>() + bit_and<T>(),

bit_or<T>()

Reduction + sum<T>() + reduce() + reduce()

Sort by Key + sort() + sort_by_key() + sort_by_key()

Sort + sort() + sort() + sort()

Prefix Sum – – + exclusive_scan() + exclusive_scan()
Scatter &

Gather – – + scatter(),
gather() + scatter(),

gather()

Product + operator*() + transform() &
multiplies<T>() + transform() &

multiplies<T>()

+ full support; ~ partial support; – no support;

TABLE II: Mapping of library functions to database operators

support database operators explicitly are relatively few (only 5)
compared to those supporting general vector operations (such
as tensor operations offered by VexCL or Eigen tensor).

Even from the available libraries, skelCL and OCL-Library
are boilerplates to OpenCL without any pre-written func-
tions. Therefore, we select Boost.Compute, Thrust and Ar-
rayFire for further analysis built over OpenCL, CUDA and
both respectively. Specifically, ArrayFire uses lazy evaluation,
Boost.Compute transforms high level functions into OpenCL
kernel programs, and Thrust operators are transformed into
CUDA C functions.

B. Operator Realization

Since GPUs are predominantly used for column-oriented
analytical queries [29]–[31], we consider the operators: projec-
tion, (conjunctive) selection, join, aggregation, grouping and
sorting (sort-by-key) for our study. Besides these, we also
study the parallel primitives: prefix-sum, scatter and gather
commonly used for materializing final values. The level of
support (i.e., usefulness) and the possible library call for a
database operator in the three libraries are listed in Table II.
The level of support is determined by the simplicity of the
usage of library operators for implementing a database oper-
ator. The full support operators have the least interoperability
costs and programming effort, because they have a direct
functional implementation available in the library. In case
of partial support (~), several function calls are needed to
realize an operator. Hence, additional effort is required to
pass the intermediate results from one function to another
before retrieving the final result. Detailed information on the
functional support from these libraries is given in the Function-
column of Table II, where we map library functions to the
database operators.

C. Summary of Library Usefulness

Overall, compared to ArrayFire, Boost.Compute and Thrust
provide an implementation for most of the selected database
operators. Specifically ArrayFire does not directly support
prefix-sum, nested-loop join, scatter, and gather operations.
In terms of functional implementations, it is notable that
ArrayFire returns a position list for selections, whereas Thrust
and Boost.Compute return bitmaps.

https://developer.nvidia.com/amgx
https://developer.nvidia.com/arrayfire
https://developer.nvidia.com/CHOLMOD
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cuda-math-library
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cuFFT
https://developer.nvidia.com/cuRAND
https://developer.nvidia.com/cuSOLVER
https://developer.nvidia.com/cuSPARSE
https://developer.nvidia.com/cuTENSOR
https://developer.nvidia.com/DALI
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/ffmpeg
https://www.goopax.com/
https://github.com/gunrock/gunrock
https://github.com/fraguela/hpl
https://developer.nvidia.com/imsl-fortran-numerical-library
https://developer.nvidia.com/nvidia-jarvis
https://developer.nvidia.com/MAGMA
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nvgraph
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/opticalflow-sdk
https://developer.nvidia.com/npp
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/nvshmem
https://github.com/lochotzke/OCL-Library
https://github.com/matze/oclkit
https://developer.nvidia.com/opencv
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/triton-ocean-sdk
https://github.com/ddemidov/vexcl
http://viennacl.sourceforge.net/

Join implementation: However, all the libraries lack a
custom implementation for specialized joins. They lack direct
support for hash tables or merge join of sorted results. Hence,
these important implementations must be developed from
scratch or support needs to be added in the libraries. However,
the database community has shown great performance for
hash-based joins [32] and, hence, these libraries should be
extended by custom operators for hashing in future versions.

IV. PERFORMANCE COMPARISON

An important requirement for using library operators for a
database system is that they deliver acceptable performance
(i.e., usability). Hence, in this section, we study the libraries’
performance for different database workloads. We split our
evaluation into two main sections: first, we benchmark the
performance of individual operators in micro-benchmarks us-
ing a synthetic dataset. Afterward, we measure the overall
performance of the libraries with complete TPC-H queries.

Experimental setup: All our experiments are conducted on
an NVDIA GeForce RTX 2080 Ti with 10GB memory and
we use the following library versions: Boost.Compute-v1.71,
ArrayFire-v3.7.2, Thrust-v11.0. All these libraries run on top
of OpenCL 1.2 and CUDA 10.1 and our evaluation framework
is written in C++ and compiled with GCC 9.3.0 running on
Ubuntu 18.045. Finally, our synthetic dataset consists of 228

randomly generated integer values unless specified otherwise
and the TPC-H dataset is generated with a scale factor 1 (due
to size limitations of Boost.Compute).

A. Transfer Time

Since each library has a custom wrapper for accessing the
data present in the GPU, they incur different overhead when
transferring data to the GPU. Hence, we analyze the data
transfer rate of the individual libraries before analyzing the
actual operator performance. We test the transfer time with
input sizes ranging from 220 integer values (5MB) up to 230

integer values (5GB) and plot it in Figure 2.

5M
B

10
M

B

18
M

B

34
M

B

70
M

B

0.
12

5G
B

0.
25

G
B

0.
5G

B

2G
B

3G
B

5G
B

0

1,000

2,000

Data size

E
xe

cu
tio

n
tim

e
(m

s)

CPU to GPU

5M
B

10
M

B

18
M

B

34
M

B

70
M

B

0.
12

5G
B

0.
25

G
B

0.
5G

B

2G
B

3G
B

5G
B

0

1,000

2,000

3,000

Data size

E
xe

cu
tio

n
tim

e
(m

s)

GPU to CPU

Thrust Boost.Compute ArrayFire

Fig. 2: Transfer times for different libraries

Foremost, the results show a considerable overhead when
transferring data to the GPU using Thrust when compared

5The source code is available here: https://github.com/harish-de/cross_
library_execution

to Boost.Compute or ArrayFire. However while transferring
data back, ArrayFire has poor transfer rates. We believe that
the additional steps taken by these libraries in allocating /
de-allocating the data leads to such poor performance. Even
though transfer rates are significant, buffering input columns
can easily avoid this overhead. Furthermore, intermediate or
final query results that need to be retrieved from the GPU are
usually significantly smaller than the input and, hence, this
overhead is mostly negligible.

B. Micro-Benchmark: Individual Operators

In this section, we measure the performance impact of
operator-specific parameters on the different library imple-
mentations. Due to space limitations, we focus on the most
common and complex database operators. We exclude sorting,
prefix-sum, and map as there are already several papers that
analyze the performance of these operators [33], [34].

Selection: As the selection operator is sensitive to the
selectivity of the incoming predicate, we evaluate the libraries
with varying the selectivity from 1% to 100%. The final result
of our selection is the materialized column of matching values.
Since Thrust and Boost.Compute create a bitmap and need an
additional prefix-sum for materialization, we also show their
single performance for creating the bitmap.

1 10 20 30 40 50 60 70 80 90 100

0

20

40

Selectivity in %

E
xe

cu
tio

n
tim

e
(m

s)

Thrust Thrust - bitmap creation only

ArrayFire Boost.Compute

Boost.Compute - bitmap creation only

Fig. 3: Performance for selection with varying selectivity

The results in Figure 3 show that the performance of
ArrayFire is far better than the performance of Thrust and
Boost.Compute for a materialized filtered column. This is
because the two libraries need additional steps of a prefix-sum
and a gather to arrive at the final result, whereas ArrayFire
directly generates position lists from which we can mate-
rialize the result. Interestingly, Boost.Compute has the best
performance when creating a bitmap, but is the worst when
materializing the result. This is due to the bad performing
gather, which is consistent to our following results.

As a result, Thrust and Boost.Compute are the best choice
for multiple predicates on the same table, because combining
bitmaps is faster than intersecting position lists. For single
predicates and if subsequent operators work with position lists
or materialized columns, ArrayFire should be chosen.

https://github.com/harish-de/cross_library_execution
https://github.com/harish-de/cross_library_execution

Group By: In this experiment, we focus on group-by
aggregation where the performance varies according to the
spread of groups. We use a uniform distribution of input values
and vary the group size from 1% to 100% where 1% has nearly
all values belonging to the same group and 100% contains one
group per input value.

1 10 20 30 40 50 60 70 80 90 100

200

400

Groups in %

E
xe

cu
tio

n
tim

e
(m

s)

Thrust Boost.Compute ArrayFire

Fig. 4: Performance for Group-by with varying group sizes

The performance in Figure 4 shows that ArrayFire and
Thrust have the best performance. Nevertheless, the superior
method changes according to the number of groups with
ArrayFire performing best for a small amount of groups and
Thrust performing best for many groups.

Joins: Joins being a complex operator, requires a consider-
able time for execution. Our nested loop join uses for_each()
- a function to parallelize an operation based on the given
input size. Therefore, we measure the performance of the
function by varying the cardinality of the left table (|R|) in
a range of 21 to 219 using a uniform distribution. Varying the
input size varies the degree of parallelism, thereby impacting
performance. Furthermore, the total size of the right table (|S|)
is 228. In the usual use case, we only join a selection of values
with selectivities ranging between 1% and 100%: 1% - 1 out of
100 matches & 100% - all S values match. However, changing
selectivity had only minor impact, such that we average our
results over all selectivities. In this experiment, we perform our
evaluation on Thrust and Boost.Compute only, as ArrayFire
does not support joins.

21 23 25 27 29 211 213 215 217 219
10−2

100

102

|R| cardinality

E
xe

cu
tio

n
tim

e
(m

s)
-

lo
gs

ca
le

Thrust

Boost.Compute

Fig. 5: Performance for join with varying R-table size

We plot the execution time for joins in logscale in Figure 5.
From the results, we see that Boost.Compute is comparatively

better in terms of parallelization, as its results are linear for
a range of inputs. However, even with its linear increasing
execution time, Thrust is considerably better for smaller input
sizes. In contrast, in case of bigger data sizes, Boost.Compute
is superior.

Scatter & Gather: Our final micro-benchmark is to measure
the performance of scatter and gather operations, as they are
useful in realizing a hashing operation. Hence, we evaluate
the performance of scatter and gather giving as positions the
results of multiplicative hashing of the input items. We chose
multiplicative hashing as it is a function that is commonly
used for scattering/gathering keys into hash tables.

Thrust Boost.Compute
0

2

4

·10−2

E
xe

cu
tio

n
tim

e
(m

s)

Scatter Gather

Fig. 6: Performance for scatter & gather

The performance comparison in Figure 6 shows clearly
that Thrust has a better scatter and gather time com-
pared to Boost.Compute. Here, the poor performance in
Boost.Compute is due to the additional kernel compilation
time, whereas Thrust does not have this additional time.

C. TPC-H Performance

In a last comparative experiment, we execute full queries
of the TPC-H benchmark (SF=1GB) using our library-based
operators. We consider two types of queries based on their
most complex operator: group-by (Q1,Q6) and join (Q3,Q4)
queries. As ArrayFire does not support a join operation, we
have substituted it with that of Thrust in queries Q3 and Q4.
Figure 7 depicts only the time taken to execute the operator
(as in Table II) and excludes the data transfer time.

For group-by queries, we see that all the libraries have
similar performance for grouping. However with conjunc-
tive predicates, Boost.Compute is the fastest followed by
Thrust and finally ArrayFire. Since, conjunctive predicates
in Boost.Compute and Thrust use bitmaps as intermediate
values, conjunction of these predicates are considerably faster.
However, Boost.Compute’s better selection performance for
Q1 is compensated by its bad aggregation performance as we
have already seen in Figure 4.

For join-intensive queries, both Boost.Compute and Array-
Fire have nearly the same performance. Since, Q3 has two
consecutive joins, the runtime of Q3 is nearly twice that of Q4.
Overall, the nested-loops join is the main bottleneck compared
to all other operations across all the libraries.

In summary, Boost.Compute is better for queries with
conjunctive selections, whereas for single predicates Thrust

Q1 Q6
0

10

20

E
xe

cu
tio

n
Ti

m
e

(m
s)

(a) Group-by

Q3 Q4
0

1,000

2,000

E
xe

cu
tio

n
Ti

m
e

(m
s)

(b) Join

Selection Join Group-by Arithmetic
Thrust Boost.Compute ArrayFire

Fig. 7: Performance of TPC-H Queries

or ArrayFire should be used. ArrayFire is better for group-by
operations and, finally, the nested-loops join operation is quite
expensive on all the libraries.

V. CONCLUSION

GPUs get more and more often integrated into database
processing both academically and commercially. However,
building a system from scratch to support database operators
is highly time consuming and requires expert knowledge.
Therefore, in this work we review different expert-written
libraries to be used for faster prototyping a GPU-accelerated
database system. Based on our review, we identify 43 GPU
libraries out of which 6 support database operators. From
these, we study in-depth the support for DBMSs considering
the following three libraries built over CUDA and OpenCL:
Thrust, Boost.Compute and ArrayFire. Based on our study,
we show that not all database operators are supported out-
of-the-box by these libraries and one requires additional re-
work for operator realization. Our evaluation shows there is
no single library that provides the best performance for all
supported database operators. Each of the libraries have their
own advantages & disadvantages and their functions must
be combined in query execution. As a final observation, we
see a lack of support for joins from these libraries making
the operator the most time-consuming one. For our future
work, we would like to extend our work with libraries built
on top of other low-level wrappers like OneAPI and do a
comprehensive study of all libraries w.r.t. their support for
database operators. Furthermore, building an optimizer that
chooses the best performing library-based operator during
runtime is another important tuning task.

REFERENCES

[1] T. Karnagel, R. Müller, and G. Lohman, “Optimizing GPU-accelerated
group-by and aggregation,” in ADMS, 2015.

[2] T. Behrens, V. Rosenfeld, J. Traub, S. Breß, and V. Markl, “SIMD
vectorization for hashing in OpenCL,” in EDBT, 2018, pp. 489–492.

[3] V. Rosenfeld, M. Heimel, C. Viebig, and V. Markl, “The operator variant
selection problem on heterogeneous hardware,” in ADMS, 2015, pp. 1–
12.

[4] P. Bakkum and K. Skadron, “Accelerating SQL database operations on
a GPU with CUDA,” in GPGPU, 2010, pp. 94–103.

[5] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and
A. Ailamaki, “Hardware-conscious hash-joins on GPUs,” in ICDE, 2019.

[6] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “GPU join processing
revisited,” in DAMON, 2012, pp. 55–62.

[7] S. Breß, “The design and implementation of CoGaDB: A column-
oriented GPU-accelerated DBMS,” Datenbank-Spektrum, vol. 14, no. 3,
pp. 199–209, 2014.

[8] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl, “Hardware-
oblivious parallelism for in-memory column-stores,” Proc. VLDB En-
dowment, vol. 6, no. 9, p. 709–720, Jul. 2013.

[9] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander, “Relational query coprocessing on graphics processors,” TODS,
vol. 34, no. 4, pp. 1–39, 2009.

[10] I. Arefyeva, G. Campero Durand, M. Pinnecke, D. Broneske, and
G. Saake, “Low-latency transaction execution on graphics processors:
Dream or reality?” in ADMS, 2018.

[11] D. Broneske, S. Breß, M. Heimel, and G. Saake, “Toward hardware-
sensitive database operations,” in EDBT, 2014, pp. 229–234.

[12] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson,
“CUDPP: CUDA data parallel primitives library,” Dec 2016. [Online].
Available: https://github.com/cudpp/cudpp

[13] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for
cuda,” in GPU computing gems Jade edition. Elsevier, 2012.

[14] SQream Technologies, “GPU based SQL database,” 2010. [Online].
Available: https://sqream.com/product/

[15] BlazingDB, “High Performance GPU Database for Big Data SQL,”
2015. [Online]. Available: https://blazingdb.com/

[16] Brytlyt, “World’s most advanced GPU accelerated database,” 2013.
[Online]. Available: https://www.brytlyt.com/

[17] R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju, Q. Luo, and P. V.
Sander, “GPUQP: Query co-processing using graphics processors,” in
SIGMOD, 2007, pp. 1061–1063.

[18] B. Gurumurthy, D. Broneske, M. Pinnecke, G. C. Durand, and G. Saake,
“SIMD vectorized hashing for grouped aggregation,” in ADBIS, 2018,
pp. 113 – 126.

[19] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. Mc-
Donald, Parallel programming in OpenMP. Morgan kaufmann, 2001.

[20] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of
the Cilk-5 multithreaded language,” in PLDI, 1998, pp. 212–223.

[21] M. Moghaddamfar, C. Färber, W. Lehner, and N. May, “Comparative
analysis of OpenCL and RTL for sort-merge primitives on FPGA,” in
DAMON, 2020.

[22] A. Becher, L. B.G. et al., “Integration of FPGAs in database man-
agement systems: Challenges and opportunities,” Datenbank-Spektrum,
2018.

[23] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous
computing techniques,” ACM CSUR, vol. 47, no. 4, pp. 1–35, 2015.

[24] S. Breß, B. Köcher, H. Funke, S. Zeuch, T. Rabl, and V. Markl,
“Generating custom code for efficient query execution on heterogeneous
processors,” The VLDB Journal, vol. 27, no. 6, p. 797–822, Dec. 2018.

[25] Y. Sun, S. Mukherjee, T. Baruah, S. Dong, J. Gutierrez, P. Mohan, and
D. Kaeli, “Evaluating performance tradeoffs on the radeon open compute
platform,” in ISPASS. IEEE, 2018, pp. 209–218.

[26] J. Szuppe, “Boost.Compute: A parallel computing library for C++ based
on OpenCL,” IWOCL, vol. 15, pp. 1–39, 2016.

[27] O. S. Lawlor, “Embedding OpenCL in C++ for expressive GPU pro-
gramming,” in WOLFHPC, 2011.

[28] M. Steuwer, P. Kegel, and S. Gorlatch, “Skelcl-a portable skeleton library
for high-level GPU programming,” in IPDPS, 2011, pp. 1176–1182.

[29] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake, “GPU-
accelerated database systems: Survey and open challenges,” TLDKS, pp.
1–35, 2014.

[30] I. Arefyeva, D. Broneske, M. Pinnecke, M. Bhatnagar, and G. Saake,
“Column vs. row stores for data manipulation in hardware oblivious
cpu/gpu database systems,” in GvDB. CEUR-WS, 2017, pp. 24–29.

[31] M. Pinnecke, D. Broneske, G. C. Durand, and G. Saake, “Are databases
fit for hybrid workloads on GPUs? A storage engine’s perspective,” in
ICDE, 2017, pp. 1599–1606.

[32] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl, “Pump up the volume:
Processing large data on GPUs with fast interconnects,” in SIGMOD,
2020, pp. 1633–1649.

[33] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives
for GPU computing,” in Graphics Hardware, 2007.

[34] D. P. Singh, I. Joshi, and J. Choudhary, “Survey of GPU based sorting
algorithms,” Int. J. Parallel Prog., vol. 46, no. 6, pp. 1017–1034, 2018.

https://github.com/cudpp/cudpp
https://sqream.com/product/
https://blazingdb.com/
https://www.brytlyt.com/

	Introduction
	Levels of Programming Abstractions
	Implementing DBMS Operators With Libraries
	Review of GPU Libraries
	Operator Realization
	Summary of Library Usefulness

	Performance Comparison
	Transfer Time
	Micro-Benchmark: Individual Operators
	TPC-H Performance

	Conclusion
	References

