
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

 GTraclus: A Local Trajectory Clustering Algorithm
for GPUs

Hamza Mustafa
Microsoft

Bellevue, Washington, USA
musta067@d.umn.edu

 Clark Barrus
School of Computer Science

University of Oklahoma

Norman, OK, USA
clark.barrus@ou.edu

Eleazar Leal
Department of Computer Science
University of Minnesota Duluth

Duluth, MN, USA
eleal@d.umn.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK, USA

ggruenwald@ou.edu

Abstract—Due to the high availability of location-based sensors

like GPS, it has been possible to collect large amounts of spatio-

temporal data in the form of trajectories, each of which is a se-

quence of spatial locations that a moving object occupies in space

as time progresses. Many applications, such as intelligent trans-

portation systems and urban planning, can benefit from clustering

the trajectories of cars in each locality of a city in order to learn

about traffic behavior in each neighborhood. However, the im-

mense and ever-increasing volume of trajectory data and the con-

cept drift present in city traffic constitute scalability challenges

that have not been addressed. In order to fill this gap, we propose

the first GPU algorithm for local trajectory clustering, called

GTraclus. We present a parallelized trajectory partitioning algo-

rithm which simplifies trajectories into line segments using the

Minimum Description Length (MDL) principle. We evaluated our

proposed algorithm using two large real-life trajectory datasets

and compared it against a multicore CPU version, which we call

MC-Traclus, of the popular trajectory clustering algorithm, Tra-

clus; our experiments showed that GTraclus had on average up to

24X faster execution time when compared against MC-Traclus.

Keywords—trajectory clustering, GPU, spatio-temporal data

I. INTRODUCTION

Easily attainable GPS technology and cheap storage space
have led to an unprecedented amount of trajectory data, where a
trajectory is the time-ordered sequence of positions, i.e., latitude
and longitude, that a moving object occupies in space as time
passes. This provides a great opportunity for analysis of similar
patterns on time-varying data by clustering the trajectories into
groups containing similar trajectories. Such analysis has a broad
range of applications in bird migration pattern identification,
location-based social networks [1], recommendation of travel
locations of interest based on common trajectories [2], finding
users with similar life experiences based on their trajectories [3],
intelligent transportation systems, and urban computing [4].
Trajectory clustering can also be used in trajectory-based
advertising, where a shopping mall, after tracking the
movements of the shoppers that have logged into the mall's wire-
less network, can send personalized advertising information to
customers based on their paths inside the mall [5].

An important consideration for clustering trajectories is
whether the elements that are going to be clustered are entire
trajectories, in which case we say that we perform global trajec-
tory clustering, or whether the elements to be clustered are not
entire trajectories but sub-trajectories, which gives rise to the
problem of local trajectory clustering. In many applications,
clustering entire trajectories may not provide important insights

into the common shorter paths the objects take, as real-world
objects do not always take similar paths for the entirety of their
journeys. For example, when predicting hurricane landfall based
on hurricane trajectories, meteorologists are more interested in
clustering hurricane behaviors near the coastline or at the sea
rather than on the entire hurricane trajectories [6]. Similarly,
when examining the effects of vehicular traffic on animal
movement, distribution, and habitat use, zoologists are more
interested in common behaviors of animal trajectories near roads
[7]. These problems can be solved with Traclus, a well-known
local trajectory clustering algorithm for single-core CPUs [8].

Despite its wide range of applications, Traclus does not scale
with large trajectory datasets. This problem along with the very
large and ever-increasing sizes of spatio-temporal datasets and
with the presence of concept drift in the previously mentioned
applications, gives rise to a need for parallel local trajectory
clustering algorithms. One way to address this problem is to uti-
lize Graphics Processing Units (GPUs), which are parallel pro-
cessors that can provide efficient and massively parallel
computation with high instruction throughput and memory
bandwidth, compared even to multicore CPUs [9]. However,
developing algorithms for GPUs is not without challenges, as
the latter have several idiosyncrasies that need to be addressed
in order to attain the high performance throughput for which
GPUs are known [10]. Among these idiosyncrasies are the small
memory space of GPUs and that the interfaces through which
they are connected to the computer (e.g., the PCIe bus) have low
throughput when compared to their instruction throughput.

Despite the advantages of GPUs, no algorithm exists that ex-
ploits this architecture for local trajectory clustering. To address
this gap, we introduce GTraclus, a novel GPU algorithm for lo-
cal trajectory clustering. GTraclus includes a novel trajectory
partitioning algorithm for GPUs that uses the Minimum De-
scription Length principle (MDL) and a novel GPU algorithm
for trajectory segment clustering. We analyze the performance
of GTraclus when applied to two large, real-world datasets,
GeoLife [2] and Porto [11], and compare its performance with
that of a multicore CPU version of Traclus, which we call MC-
Traclus. The contributions of this paper are the following: 1) A
novel GPU algorithm, named GTraclus, for trajectory partition-
ing according to the Minimum Description Length principle; 2)
a GPU algorithm to cluster segments with a breadth-first search
on a graph whose nodes are the partitioned line segments; and
3) a comprehensive set of experiments demonstrating the
performance and scalability of GTraclus clustering hundreds of
thousands of trajectories from real-world datasets.

The remainder of this paper is organized as follows: Section
II presents background concepts and related work; Section III
contains the description of the proposed GTraclus algorithm;
Section IV contains a thorough performance analysis; and fi-
nally, Section V presents conclusions and future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide the background material neces-
sary to follow the discussions on GPUs, local trajectory cluster-
ing, and present related work.

GPUs. GPUs are highly parallel processors connected to the
main computer through an interface like PCIe and can achieve
up to an order of magnitude of higher throughput than compara-
ble multicore CPUs [9]. GPU programs are organized into
kernels [12], which are C-like functions called from within the
CPU, also called the host. Kernels launch a grid of thousands of
simultaneously executing threads, which are grouped into
blocks. The GPU’s memory space is separate from the host’s,
which makes it necessary to send all input data through the PCIe
bus before any processing can take place in the GPU, and to send
all output data from the GPU back to the host. The memory
space of GPUs is also hierarchical: threads can access their own
individual local memory registers; threads in a block can
cooperate by using the larger block-wide shared memory; and
threads across different blocks all have access to the slower but
bigger global GPU memory.

In order to use GPUs to exploit the parallelism present in
many algorithms, it is necessary to address the research chal-
lenges of this architecture. Among these challenges are the fol-
lowing: 1) global memory coalescing, which consists in a reduc-
tion in the contention for the GPU’s global memory that results
from having consecutive threads access adjacent memory loca-
tions [13]; 2) low throughput of the GPU-host interface. Since
GPUs are connected to the host through relatively low through-
put interfaces such as PCIe, it is essential that communication
through the GPU-host interface is minimized; and 3) load bal-
ancing. GPU kernels must make sure that different threads and
blocks have an equal amount of work so that a single thread or
block does not dominate the total execution time.

Trajectory clustering. The problem of trajectory cluster-
ing, also called global trajectory clustering, consists in that
given a dataset of trajectories D and a similarity measure be-
tween any two trajectories s, find a collection of mutually dis-
joint subsets, also called clusters, of D such that the trajectories
belonging to any cluster c are more similar to each other accord-
ing to s than they are to trajectories in other clusters different
from c. Due to the importance of trajectory clustering
applications, there are several works devoted to the study of this
problem [14] [15] [16].

However, there are applications where clustering the entire
trajectories may not provide insights into the common shorter
paths that the objects took because real-world objects do not
always take similar paths for the entirety of their journeys, in-
stead they take similar paths for only a portion of them. For ex-
ample, when clustering the trajectories of vehicles moving in a
large city like Beijing, most people do not have very similar tra-
jectories because they live and work in different places. How-
ever, if the trajectories are first broken into sub-trajectories and

then clustered, then it is possible to discover, for example, that
many vehicles drive on a specific highway. Based on this obser-
vation, the problem of local trajectory clustering [8] was intro-
duced, which consists in that given a dataset of trajectories D
and a similarity measure between any two line segments s, find
a collection of mutually disjoint sets, also called clusters, of sub-
trajectories of trajectories in D such that the sub-trajectories be-
longing to any cluster c are more similar to each other according
to s than they are to sub-trajectories in clusters different from c.

The Traclus algorithm [8] was proposed to solve the local
trajectory clustering problem and it works in two phases: it first
partitions trajectories into line segments, and then clusters the
line segments. Traclus uses the Minimum Description Length
(MDL) principle to approximate the best representation for a
trajectory while losing as little information as possible. Other
works devoted to trajectory clustering are TCMM [17], CenTra-
I-FCM [18] and NNCluster [19], neither of which can perform
local trajectory clustering.

Despite the many advantages of GPUs, e.g. their availability
in almost all kinds of computing devices, none of the clustering
algorithms has been developed to address the issues of GPUs.
To the extent of our knowledge, the only other GPU trajectory
clustering algorithms are G-Tra-POPTICS [20], a density-based
point clustering algorithm for global trajectory clustering, not
for local trajectory clustering like ours, and the work by Gud-
mundsson and Valladares [21], which, unlike GTraclus, finds
clusters of similar sub-trajectories within a single trajectory and
makes use of the Fréchet distance and not MDL.

III. PROPOSED ALGORITHM

In this section, we present our proposed algorithm, GTra-
clus, for local trajectory clustering on GPUs.

A. Overview

GTraclus is a GPU algorithm for local trajectory clustering
that receives as inputs two numbers: minLines and Epsilon. This
algorithm works in two stages executed in succession: a parti-
tioning stage and a grouping stage. In its partitioning stage,
GTraclus uses the Minimum Description Length (MDL)
principle to partition trajectories into line segments, and in its
grouping stage, it uses a GPU density-based clustering algorithm
to cluster similar line segments. GTraclus also includes several
optimization strategies for GPUs to bring the computation time
down. We now provide a brief overview of each of these stages.

In its partitioning stage, GTraclus uses separate GPU threads
to partition each input trajectory by identifying characteristic
points, which are the points belonging to the trajectory that best
partition it into line segments in terms of MDL cost [8]. To
discover the characteristic points of trajectory, a GPU thread
traverses each point of the latter while comparing the MDL cost
of either including or not including the current point. If the cur-
rent point under consideration leads to a greater overall MDL
cost for the trajectory it belongs to, then the previous point is
classified as a characteristic point.

The grouping phase of GTraclus performs density-based
clustering of the trajectory segments on the GPU using a reach-
ability graph. This graph has as vertex or node set the set of all
segments produced in the partitioning stage, and its edge set is

constructed by having an edge between any two vertices that lie
within a segment distance [8] of Epsilon. Then, it is possible to
identify the core segments, i.e., those nodes that have at least
minLines many nodes within a segment distance of Epsilon, then
the border segments, i.e., those nodes that are not core, but such
that there is a path in the reachability graph from them to a core
segment, and the noise segments, which are all other segments
that are neither core nor border. Then, by doing successive BFS
traversals on the reachability graph starting from different core
segments p, it is possible to identify all the nodes reachable from
p, which are the members of the cluster to which p belongs.

B. Partitioning Stage

The first stage of GTraclus partitions the input trajectory
dataset D using the GPU-Partition function called in Line 1 of
the function GTraclus in Algorithm 1. Given a trajectory T = T1,
T2, …, Tsize(T), partitioning T according to the MDL principle
consists in finding a subsequence {��� , ��� , … , �����} of points

of T, each of which is called a characteristic point, such that the
MDL cost, defined as L(H) + L(D|H) is minimized, where L(H)
and L(D|H) are defined as:

	
�� = � log� �	����ℎ ����������� � �
!"#

	
$|�� = � � log� �&' ���� ����� , �(�()#������ #
("��

� �
!"#

+ log� �&+ ���� ����� , �(�()#�� .
In the above definition, �������� denotes the segment from

��� to ����� and 	����ℎ ���� ������ is the Euclidean distance be-

tween its endpoints, &' is the orthogonal distance [17] between

two segments 	- and 	! where ‖	-‖ ≥ 0	!0, and it is defined as

follows: &'1	- , 	!2 =
3'#� + 3'�� � /
3'# + 3'��, where 3'# is

the distance from one of the endpoints of 	! to 	- , 3'� is the

distance from the other endpoint of 	! to 	- . Also, &+ is the

angular distance between those two segments and is defined as:

&+1	- , 	!2 = 5 0	!0 ∙ sin
:� , ;< 0 ≤ : ≤ ? 2⁄
0	!0, ;< ? 2⁄ ≤ : ≤ ?.

To solve the MDL trajectory partitioning problem, we fol-
low Traclus’s approximate partitioning algorithm [8]. We paral-
lelize the problem on the GPU by assigning different trajectories
to different threads. The first step in GTraclus’s partitioning
stage is to calculate the number of segments for each trajectory,
which is done by the CountPartitions kernel. In this kernel, each
thread is in charge of sequentially traversing the points of its as-
signed trajectory seeking for characteristic points. The number
of characteristic points determines the number of segments of a
trajectory. This kernel, called in Line 2 of the Function GPU-
Partition in Algorithm 1, returns the array dSegs containing the
number of segments for each trajectory.

Once the number of segments for each trajectory is known,
it is possible to actually allocate space in the GPU’s global
memory to hold the trajectory segments. To accomplish this, an
inclusive scan is executed over the array dSegs, as shown in Line
4 of the Function GPU-Partition in Algorithm 1. This operation
can be performed efficiently on GPUs and is used in this case to
compute the offsets in the segments array in which each trajec-
tory’s segments will reside. The original dataset is then

discarded to free GPU memory. As mentioned, the segments are
computed and stored using Traclus’s approximate partitioning
algorithm in parallel, as shown in Lines 5–8 of GPU-Partition.

By first counting the number of partitions, allocating space
for the results on the host and then calculating and saving those
partitions in GPU memory, the partitioning stage can take place
entirely in GPU memory. If each thread allocated its own sepa-
rate space for the segments of its trajectory, each partition would
be in an independent location in memory and the host, and future
kernels would have to deal with different data locations. The
strategy of maintaining all of the segments in one array indexed
by dSegs ensures that the partitions are aligned in one array and
in contiguous memory for use in the following kernels.

C. Grouping Stage

In the grouping stage, called in Line 2 of the GTraclus func-
tion in Algorithm 1, the line segments produced by the partition-
ing stage are clustered. To do this, we present a new density-
based segment clustering algorithm for GPUs. Unlike the exist-
ing G-DBSCAN [22], which is designed for density-based clus-
tering of points, the algorithm proposed here clusters trajectory
segments, which poses a different challenge concerning the ar-
rangement of data in memory in order to guarantee global
memory coalescing in the GPU.

In Line 1 of the procedure G-TrajScan in Algorithm 2, our
proposed algorithm creates a density-connectedness graph
whose vertices are the segments of all trajectories. There exists
an edge between any two vertices in this graph if and only if
their corresponding segments lie within an Epsilon distance of
each other, measured according to the segment distance of
Traclus [8]. Once this graph is created, GTraclus performs a se-
quence of parallel breadth-first searches (BFS) on the segments
in order to find segment clusters; each separate BFS search gives
rise to a different trajectory cluster. This strategy is highly
efficient on GPUs because the large amount of distance
calculations between trajectory segments can be parallelized.
Given any vertex, all other vertices that are reachable from it,
meaning that there is a path in the graph between them, are

Function GTraclus (Trajectory Set D, Double epsilon, Double
minLines)
Performs local trajectory clustering on D in the GPU using the
values of Epsilon and minLines

1. segments ← GPU-Partition(D)
2. labels ← G-TrajScan(segments, epsilon, minLines)
3. return (segments, labels)

Function GPU-Partition (Trajectory Set D)
Each trajectory in D is partitioned in parallel according to the MDL
principle

1. for each trajectory t in D do in parallel
2. dSegs[t] ← CountPartitions(t)
3. done

4. dSegs ← InclusivePrefixSum(dSegs)
5. for each trajectory t in D do in parallel
6. segments ← FillPartitions(t, dSegs)
7. done

8. return segments

Algorithm 1. Pseudo-code of the GTraclus Algorithm

labeled as members of the same cluster. All the segments that
are not part of any cluster are labeled as noise.

Since our proposed segment clustering algorithm clusters
line segments, it stores for each segment the coordinates of its
start and end points, the index of the trajectory to which it be-
longs, and the identifier of the cluster to which it will belong. To
this end, Lines 1–4 of the Make-Graph function in Algorithm 2
count the number of segments within an Epsilon distance of each
segment, then Line 5 computes a prefix sum over the number of
neighbors of each segment with the purpose of allocating space
for the adjacency matrix. Lines 6–11 then compute the adja-
cency matrix by checking in parallel which segments are within
an Epsilon distance for each node.

Once the reachability graph is created, a GPU-based BFS is
initiated in Line 2 of the G-TrajScan procedure in Algorithm 2.
Each core segment (line segments with at least minLines many
segments within a segment distance of Epsilon) will become the
starting point of a BFS search and each thread goes into the
adjacency lists of density-connected line segments and marks
them as visited (Lines 1–8 in the Identify-Clusters procedure of
Algorithm 2). All density-connected line segments [23] get the
same cluster label, and the process is conducted in parallel. Once
all segments are marked as visited, the algorithm concludes, and
clustering data is provided as output. The GPU-BFS is designed
as a sequence of BFS kernel calls where each thread is assigned
a node on the frontier, which consists of the nodes in the
adjacency list of the previous frontier, until the entire frontier is
explored. This allows the GPU to explore the entire frontier of
the breadth-first search at the same time.

Since each thread performs each one of the calculations in
parallel, the threads can make full use of their local thread
registers to store and sum the distance and vector calculations.
These calculations are designed to contain no branching logic so
different thread instructions will not diverge, allowing the GPU
to achieve high performance. Since all of the partitioned line
segments are stored in a single array and threads access this
array in a serial fashion when loading the partitions to perform
distance calculations, the GPU is able to coalesce the data
transfers from global memory.

IV. PERFORMANCE ANALYSIS

In this section, we describe the datasets, hardware and the
setup used in the experiments presented in this paper. We com-
pare GTraclus against MC-Traclus, a multicore algorithm based
on Traclus that we wrote for this purpose and that in these ex-
periments we run with 24 threads. MC-Traclus is identical to
Traclus, except it parallelizes the distance computation between
segment pairs by assigning different threads to different pairs.

A. Datasets

For our experiments, we used two real datasets: Geolife [2]
and the Taxi Service Trajectory Prediction Challenge dataset
[11], which we will refer to as Porto. GeoLife contains the
trajectories of people and cars as they move through the city of
Beijing, while the Porto trajectories log taxis as they move
through the city of Porto in Portugal. Both datasets contain a
considerable amount of trajectory data, Geolife has 17,621,
which were broken down into over 100,000 trajectories, and

Procedure G-TrajScan (Segment Set D, double Epsilon, dou-
ble minLines)
Performs the grouping stage of GTraclus on D in the GPU using
the values of Epsilon and minLines

1. graph ← Make-Graph(D, Epsilon, minLines)
2. labels ← Identify-Clusters(graph, Epsilon, minLines)
3. return labels

Function Make-Graph (Segment Set D, double Epsilon, double

minLines)
Constructs the reachability graph on the set of segments D

1. for p in D do in parallel numNeighbors[p] ← 0 end for
2. for each pair(p,q) of segments in D do in parallel

3. if dist(p,q) < Epsilon then numNeighbors[p]++ end if

4. done

5. startPos ← ExclusivePrefixSum(numNeighbors)
6. for each pair(p,q) of segments in D do in parallel

7. if dist(p,q) < Epsilon then

8. Add q to the adjacency list of p and vice versa

9. end if

10. end for

11. return new Graph(adjacency, startPos)

Procedure Identify-Clusters (Graph G, double Epsilon, double

minLines)
Performs a BFS on the graph G in order to discover clusters

1. clusterID ← 0

2. for each node v do visited[v] ← false done

3. for each node v in G do
4. if not visited(v) and v is a core segment then

5. visited[v] ← true; labels[v] ← clusterID

6. GPU-BFS(v, G, Epsilon, minLines, clusterID++)
7. end if

8. done; return labels

Procedure GPU-BFS (Node v, double Epsilon, double min-

Lines, integer clusterId)
Performs a BFS on the graph G in order to discover clusters

1. Initialize array F[1..graph.numNodes] with false values
2. Initialize array V [1..graph.numNodes] with false values

3. F[v] ← true // Put node v in the frontier

4. while F has some node with a value of true do
5. GPU-BFS-Kernel(graph, Epsilon, minLines, F, V)
6. done

7. Bring the V array from the GPU to the host
8. for each node n in the graph G do
9. if V[n] then

10. label[n] ← clusterID; visited[n] ← true

11. end if

12. done

Kernel GPU-BFS-Kernel (Graph G, double epsilon, double

minLines, Array of boolean frontier, Array of boolean visited)
GPU Kernel that assists GPU-BFS in performing a BFS search

1. if frontier[tID] then

2. frontier[tID] ← false; visited[tID] ← true

3. for each neighbor n of the node with identifier tID do

4. if not visited[n] then frontier[n] ← true end if

5. done

6. end if

Algorithm 2. Pseudo-code of the G-TrajScan Algorithm

Porto has 1.7 million trajectories. Geolife occupies 700 MB and
Porto occupies 1.8 GB. Each dataset is kept in the GPU’s global
memory.

B. Hardware

Our experiments were performed on a machine with Ubuntu
18.04 using CUDA 10. The hardware used was two Intel Xeon®
6136 processor and an NVIDIA Tesla V100 GPU with 16 GB.

C. Parameters

For DBSCAN, as the minLines parameter decreases and the
epsilon parameter increases, the number of resulting clusters
approaches one. We employ realistic measurements for both as
default parameters for our tests. The parameters used in our ex-
periments are presented Table I along with their default values
indicated in bold.

TABLE I. DEFAULT PARAMETERS

Parameter Name Values

Epsilon 10-4, 10-3, 10-2, 0.1, 1, 10, 102

minLines 100, 200, 300, 400, 500, 600

Num. of Trajectories 101, 102, 103, 104, 105

GPU Threads Per Block (GTraclus) 512

Num. of CPU Threads (MC-Traclus) 24

D. Performance Measure

In our experiments, the performance measure is the total
execution time of the algorithm measured from the moment
when it starts executing until the moment when the results are
available in the host. Each query was run 5 times and we report
the average of these 5 executions.

E. Experimental Results

In this section, we describe the impact of the parameters on
the performance measures of the competing algorithms.

1) Impact of the Number of Trajectories

In this section, we describe the impact of the number of tra-
jectories to cluster on the performance of each algorithm.
Increasing the number of trajectories affected the processing
time of both MC-Traclus and GTraclus, and while the MC-
Traclus outperforms GTraclus for a small number of trajectories,
GTraclus performs much better for large trajectory datasets.

Figure 1(a) shows the results of MC-Traclus and GTraclus
executed on the Porto taxi dataset. In this figure we see that for
fewer than 1,000 trajectories, the multicore CPU MC-Traclus
performed faster than GTraclus, the latter performing 7.8X
slower (5 ms versus 39 ms) for 100 trajectories. GTraclus
however, started gaining advantage over MC-Traclus for da-
tasets with over 1,000 trajectories, performing 5.5X faster for
10,000 trajectories and 22X faster for 100,000 trajectories. The
reason for this is the GPU's parallel architecture is able to effec-
tively support the independent distance calculations that G-
DBSCAN utilizes. Every thread measures the parallel,
perpendicular, and angular distances [8] independently and
using hundreds of threads and overcomes the overheads
produced by the memory transfers between main memory and
device memory. In Figure 1(b), it is possible to see similar re-
sults for the Geolife dataset, where the performance improve-
ment of GTraclus over MC-Traclus is even more pronounced
than in the Porto dataset: GTraclus performs better starting from
100 trajectories instead of 1,000, and achieving up to 24X faster
execution time than MC-Traclus for 100,000 trajectories. This
is because each trajectory has fewer points compared to the
Porto dataset, improving the execution time of the partitioning
step on GPU, which is sensitive to trajectories with many points.

The partitioning stage on the GPU for 1,000 trajectories
takes three times as much time as on MC-Traclus. At 10,000 and
100,000 trajectories it closed this gap and started to perform
about as well as the original MC-Traclus partitioning
implementation. This is because partitioning trajectories is a
semi-sequential process. As mentioned earlier, the partitioning

Figure 1. (a) Impact of the number of trajectories to cluster on the average total execution time in miliseconds in the Porto dataset. (b) Impact of the number of

trajectories to cluster on the average total execution time in miliseconds in the Geolife dataset. (c) Impact of Epsilon on the average total execution time in
miliseconds in the Porto dataset. (d) Impact of Epsilon on the average total execution time in miliseconds in the Geolife dataset. (e) Impact of minLines on the

average total execution time in miliseconds in the Porto dataset. (f) Impact of minLines on the average total execution time in miliseconds in the Geolife dataset. In
all experiments, 24 threads were used for MC-Traclus.

stage takes up less than 1% of the total time so a slowdown of
three times as much, as was observed, is not as significant.

2) Impacts of Epsilon and minLines
In this experiment, we assess the impact of the Epsilon and

minLines parameters on the performance of both algorithms. On
one hand, we found that there was a significant impact of the
Epsilon parameter on total execution time, as seen in Figure 1(c)
and Figure 1(d). As Epsilon became larger, this led to the
creation of a single large trajectory cluster and to an execution
time increase of two orders of magnitude. This is due to the
overhead in computing extremely large neighborhoods and
performing very large graph searches for huge numbers of
results. At the extreme parameter values tested, many segments
that would be classified as noise are included in clusters, and
many clusters which would be differentiated are included
together. On the other hand, varying the minLines parameter
within the range specified had little impact on the performance
of GTraclus, as seen in Figure 1(e) and Figure 1(f). We conclude
from these tests that GTraclus performance is resilient to
extreme parameter values and clustering situations, as the
change in performance was relatively even across these trials.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new GPU algorithm for local
trajectory clustering based on the Minimum Description Length
principle (MDL). Existing algorithms to solve the problem of
local trajectory clustering based on this principle, like MC-
Traclus, a multithreaded version of Traclus, do not scale. We
addressed this gap by effectively parallelizing the distance com-
putations between trajectories in the GPU. GTraclus provides
the same clustering results as MC-Traclus but for large numbers
of trajectories, starting around 100 to 1,000 trajectories, it results
in up to 24X faster execution time than the comparable multi-
core algorithm MC-Traclus. In the future, we would like to
research the applications of GPU-based processing on fuzzy
cluster membership of trajectories [18].

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under Grant No. 1302439 and 1302423.

REFERENCES

[1] Y. Zheng, "Location-Based Social networks: Users," in Computing with
Spatial Trajectories, Z. Y and X. Zhou, Eds., Springer, 2011.

[2] Y. Zheng, X. Xie, W.-Y. Ma and others, "GeoLife: A collaborative social
networking service among user, location and trajectory," IEEE Data
Eng. Bull., vol. 33, no. 2, 2010.

[3] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu and W.-Y. Ma, "Mining User
Similarity Based on Location History," in ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, 2008.

[4] Y. Zheng, C. Licia, O. Wolfson and H. Yang, "Urban Computing:
Concepts, Methodologies, and Applications," ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 5, no. 3, 2014.

[5] A. Ghose, Tap: Unlocking the Mobile Economy, MIT Press, 2018.

[6] M. D. Powell and S. D. Aberson, "Accuracy of United States Tropical
Cyclone Landfall Forecasts in the Atlantic Basin (1976-2000)," Bull. of
the American Meteorological Society, vol. 82, no. 12, 2001.

[7] M. J. Wisdon, N. J. Cimon, B. K. Johnson, E. O. Garton and J. W.
Thomas, "Spatial Partitioning by Mule Deer and Elk in Relation to
Traffic," in Trans. of the North American Wildlife and Natural Resources
Conf., 2004.

[8] J.-G. Lee, J. Han and K.-Y. Whang, "Trajectory Clustering: A Partition-
and-Group Framework," in ACM SIGMOD International Conference on
Management of Data, 2007.

[9] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N.
Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal and
P. Dubey, "Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU," in 37th Annual International
Symposium on Computer Architecture, 2010.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer and K. Skadron,
"A performance study of general-purpose applications on graphics
processors using CUDA," Journal of Parallel and Distributed
Computing, vol. 68, no. 10, 2008.

[11] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira and L.
Damas, "Predicting Taxi-Passenger Demand Using Streaming Data,"
IEEE Trans. on Intelligent Transportation Systems, vol. 14, no. 3, 2013.

[12] "Programming Guide: Cuda Toolkit Documentation," NVIDIA
Corporation, 2020. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/. [Accessed 11
October 2020].

[13] "CUDA C++ Best Practices Guide," NVIDIA Corporation, 2020.
[Online]. Available: https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html. [Accessed 11 October 2020].

[14] S. Gaffney and P. Smyth, "Trajectory Clustering with Mixtures of
Regressions Models," in ACM SIGKDD International Conference on
Knowledge Discover and Data Mining, 1999.

[15] Y. Zheng, "Trajectory Data Mining: An Overview," ACM Transactions
on Intelligent Systems and Technology, 2015.

[16] S. Gaffney, A. Robertson, P. Smyth, S. Camargo and M. Ghil,
"Probabilistic clustering of extratropical cyclones using regressions
mixture models," Climate Dynamics, vol. 29, 2007.

[17] Z. Li, J.-G. Lee and J. Han, "Incremental Clustering of Trajectories," in
International Conference on Database Systems for Advanced
Applications - Volume Part II., 2010.

[18] N. Pelekis, I. Kopanakis, E. E. Kotsifakos, E. Frentzos and Y.
Theodoridis, "Clustering Uncertain Trajectories," Knowledge
Information Systems, vol. 28, no. 1, 2011.

[19] G.-P. Roh and S.-w. Hwang, "NNCluster: An Efficient Clustering
Algorithm for Road Network Trajectories," in International Conference
on Database Systems for Advanced Applications, 2010.

[20] Z. Deng, Y. Hu, M. Zhu, X. Huang and B. Du, "A scalable and fast
OPTICS for clustering trajectory big data," Cluster Computing, vol. 18,
no. 2, 2015.

[21] J. Gudmundsson and N. Valladares, "A GPU approach to subtrajectory
clustering using the Fréchet distance," in ACM SIGSPATIAL, 2012.

[22] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira and L.
Rocah, "G-DBSCAN: A GPU Accelerated Algorithm for Density-based
Clustering," Procedia Computer Science, vol. 18, 2013.

[23] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A Density-based
Algorithm for Discovering Clustering in Large Spatial Databases with
Noise," in International Conference on Knowledge Discover and Data
Mining, 1996.

[24] P. Harish and P. Narayanan, "Accelerating Large Graph Algorithms on
the GPU using CUDA," Proceedings of the International Conference on
High Performance Computing, 2007.

[25] E. Leal and L. Gruenwald, "DynMDL: A Parallel Trajectory
Segmentation Algorithm," IEEE Int'l. Congress on Big Data, 2018.

