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Abstract—Due to the high availability of location-based sensors 

like GPS, it has been possible to collect large amounts of spatio-

temporal data in the form of trajectories, each of which is a se-

quence of spatial locations that a moving object occupies in space 

as time progresses. Many applications, such as intelligent trans-

portation systems and urban planning, can benefit from clustering 

the trajectories of cars in each locality of a city in order to learn 

about traffic behavior in each neighborhood. However, the im-

mense and ever-increasing volume of trajectory data and the con-

cept drift present in city traffic constitute scalability challenges 

that have not been addressed. In order to fill this gap, we propose 

the first GPU algorithm for local trajectory clustering, called 

GTraclus. We present a parallelized trajectory partitioning algo-

rithm which simplifies trajectories into line segments using the 

Minimum Description Length (MDL) principle. We evaluated our 

proposed algorithm using two large real-life trajectory datasets 

and compared it against a multicore CPU version, which we call 

MC-Traclus, of the popular trajectory clustering algorithm, Tra-

clus; our experiments showed that GTraclus had on average up to 

24X faster execution time when compared against MC-Traclus.  
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I. INTRODUCTION  

Easily attainable GPS technology and cheap storage space 
have led to an unprecedented amount of trajectory data, where a 
trajectory is the time-ordered sequence of positions, i.e., latitude 
and longitude, that a moving object occupies in space as time 
passes. This provides a great opportunity for analysis of similar 
patterns on time-varying data by clustering the trajectories into 
groups containing similar trajectories. Such analysis has a broad 
range of applications in bird migration pattern identification, 
location-based social networks [1], recommendation of travel 
locations of interest based on common trajectories [2], finding 
users with similar life experiences based on their trajectories [3], 
intelligent transportation systems, and urban computing [4]. 
Trajectory clustering can also be used in trajectory-based 
advertising, where a shopping mall, after tracking the 
movements of the shoppers that have logged into the mall's wire-
less network, can send personalized advertising information to 
customers based on their paths inside the mall [5]. 

An important consideration for clustering trajectories is 
whether the elements that are going to be clustered are entire 
trajectories, in which case we say that we perform global trajec-
tory clustering, or whether the elements to be clustered are not 
entire trajectories but sub-trajectories, which gives rise to the 
problem of local trajectory clustering. In many applications, 
clustering entire trajectories may not provide important insights 

into the common shorter paths the objects take, as real-world 
objects do not always take similar paths for the entirety of their 
journeys. For example, when predicting hurricane landfall based 
on hurricane trajectories, meteorologists are more interested in 
clustering hurricane behaviors near the coastline or at the sea 
rather than on the entire hurricane trajectories [6]. Similarly, 
when examining the effects of vehicular traffic on animal 
movement, distribution, and habitat use, zoologists are more 
interested in common behaviors of animal trajectories near roads 
[7]. These problems can be solved with Traclus, a well-known 
local trajectory clustering algorithm for single-core CPUs [8]. 

Despite its wide range of applications, Traclus does not scale 
with large trajectory datasets. This problem along with the very 
large and ever-increasing sizes of spatio-temporal datasets and 
with the presence of concept drift in the previously mentioned 
applications, gives rise to a need for parallel local trajectory 
clustering algorithms. One way to address this problem is to uti-
lize Graphics Processing Units (GPUs), which are parallel pro-
cessors that can provide efficient and massively parallel 
computation with high instruction throughput and memory 
bandwidth, compared even to multicore CPUs [9]. However, 
developing algorithms for GPUs is not without challenges, as 
the latter have several idiosyncrasies that need to be addressed 
in order to attain the high performance throughput for which 
GPUs are known [10]. Among these idiosyncrasies are the small 
memory space of GPUs and that the interfaces through which 
they are connected to the computer (e.g., the PCIe bus) have low 
throughput when compared to their instruction throughput. 

Despite the advantages of GPUs, no algorithm exists that ex-
ploits this architecture for local trajectory clustering. To address 
this gap, we introduce GTraclus, a novel GPU algorithm for lo-
cal trajectory clustering. GTraclus includes a novel trajectory 
partitioning algorithm for GPUs that uses the Minimum De-
scription Length principle (MDL) and a novel GPU algorithm 
for trajectory segment clustering. We analyze the performance 
of GTraclus when applied to two large, real-world datasets, 
GeoLife [2] and Porto [11], and compare its performance with 
that of a multicore CPU version of Traclus, which we call MC-
Traclus. The contributions of this paper are the following: 1) A 
novel GPU algorithm, named GTraclus, for trajectory partition-
ing according to the Minimum Description Length principle; 2) 
a GPU algorithm to cluster segments with a breadth-first search 
on a graph whose nodes are the partitioned line segments; and 
3) a comprehensive set of experiments demonstrating the 
performance and scalability of GTraclus clustering hundreds of 
thousands of trajectories from real-world datasets. 



The remainder of this paper is organized as follows: Section 
II presents background concepts and related work; Section III 
contains the description of the proposed GTraclus algorithm; 
Section IV contains a thorough performance analysis; and fi-
nally, Section V presents conclusions and future work.  

II. BACKGROUND AND RELATED WORK 

In this section, we provide the background material neces-
sary to follow the discussions on GPUs, local trajectory cluster-
ing, and present related work.  

GPUs. GPUs are highly parallel processors connected to the 
main computer through an interface like PCIe and can achieve 
up to an order of magnitude of higher throughput than compara-
ble multicore CPUs [9]. GPU programs are organized into 
kernels [12], which are C-like functions called from within the 
CPU, also called the host. Kernels launch a grid of thousands of 
simultaneously executing threads, which are grouped into 
blocks. The GPU’s memory space is separate from the host’s, 
which makes it necessary to send all input data through the PCIe 
bus before any processing can take place in the GPU, and to send 
all output data from the GPU back to the host. The memory 
space of GPUs is also hierarchical: threads can access their own 
individual local memory registers; threads in a block can 
cooperate by using the larger block-wide shared memory; and 
threads across different blocks all have access to the slower but 
bigger global GPU memory. 

In order to use GPUs to exploit the parallelism present in 
many algorithms, it is necessary to address the research chal-
lenges of this architecture. Among these challenges are the fol-
lowing: 1) global memory coalescing, which consists in a reduc-
tion in the contention for the GPU’s global memory that results 
from having consecutive threads access adjacent memory loca-
tions [13]; 2) low throughput of the GPU-host interface. Since 
GPUs are connected to the host through relatively low through-
put interfaces such as PCIe, it is essential that communication 
through the GPU-host interface is minimized; and 3) load bal-
ancing. GPU kernels must make sure that different threads and 
blocks have an equal amount of work so that a single thread or 
block does not dominate the total execution time. 

Trajectory clustering. The problem of trajectory cluster-
ing, also called global trajectory clustering, consists in that 
given a dataset of trajectories D and a similarity measure be-
tween any two trajectories s, find a collection of mutually dis-
joint subsets, also called clusters, of D such that the trajectories 
belonging to any cluster c are more similar to each other accord-
ing to s than they are to trajectories in other clusters different 
from c. Due to the importance of trajectory clustering 
applications, there are several works devoted to the study of this 
problem [14] [15] [16].  

However, there are applications where clustering the entire 
trajectories may not provide insights into the common shorter 
paths that the objects took because real-world objects do not 
always take similar paths for the entirety of their journeys, in-
stead they take similar paths for only a portion of them. For ex-
ample, when clustering the trajectories of vehicles moving in a 
large city like Beijing, most people do not have very similar tra-
jectories because they live and work in different places. How-
ever, if the trajectories are first broken into sub-trajectories and 

then clustered, then it is possible to discover, for example, that 
many vehicles drive on a specific highway. Based on this obser-
vation, the problem of local trajectory clustering [8] was intro-
duced, which consists in that given a dataset of trajectories D 
and a similarity measure between any two line segments s, find 
a collection of mutually disjoint sets, also called clusters, of sub-
trajectories of trajectories in D such that the sub-trajectories be-
longing to any cluster c are more similar to each other according 
to s than they are to sub-trajectories in clusters different from c.  

The Traclus algorithm [8] was proposed to solve the local 
trajectory clustering problem and it works in two phases: it first 
partitions trajectories into line segments, and then clusters the 
line segments. Traclus uses the Minimum Description Length 
(MDL) principle to approximate the best representation for a 
trajectory while losing as little information as possible. Other 
works devoted to trajectory clustering are TCMM [17], CenTra-
I-FCM [18] and NNCluster [19], neither of which can perform 
local trajectory clustering.  

Despite the many advantages of GPUs, e.g. their availability 
in almost all kinds of computing devices, none of the clustering 
algorithms has been developed to address the issues of GPUs. 
To the extent of our knowledge, the only other GPU trajectory 
clustering algorithms are G-Tra-POPTICS [20], a density-based 
point clustering algorithm for global trajectory clustering, not 
for local trajectory clustering like ours, and the work by Gud-
mundsson and Valladares [21], which, unlike GTraclus, finds 
clusters of similar sub-trajectories within a single trajectory and 
makes use of the Fréchet distance and not MDL. 

III. PROPOSED ALGORITHM 

In this section, we present our proposed algorithm, GTra-
clus, for local trajectory clustering on GPUs. 

A. Overview 

GTraclus is a GPU algorithm for local trajectory clustering 
that receives as inputs two numbers: minLines and Epsilon. This 
algorithm works in two stages executed in succession: a parti-
tioning stage and a grouping stage. In its partitioning stage, 
GTraclus uses the Minimum Description Length (MDL) 
principle to partition trajectories into line segments, and in its 
grouping stage, it uses a GPU density-based clustering algorithm 
to cluster similar line segments. GTraclus also includes several 
optimization strategies for GPUs to bring the computation time 
down. We now provide a brief overview of each of these stages. 

In its partitioning stage, GTraclus uses separate GPU threads 
to partition each input trajectory by identifying characteristic 
points, which are the points belonging to the trajectory that best 
partition it into line segments in terms of MDL cost [8]. To 
discover the characteristic points of trajectory, a GPU thread 
traverses each point of the latter while comparing the MDL cost 
of either including or not including the current point. If the cur-
rent point under consideration leads to a greater overall MDL 
cost for the trajectory it belongs to, then the previous point is 
classified as a characteristic point. 

The grouping phase of GTraclus performs density-based 
clustering of the trajectory segments on the GPU using a reach-
ability graph. This graph has as vertex or node set the set of all 
segments produced in the partitioning stage, and its edge set is 



constructed by having an edge between any two vertices that lie 
within a segment distance [8] of Epsilon. Then, it is possible to 
identify the core segments, i.e., those nodes that have at least 
minLines many nodes within a segment distance of Epsilon, then 
the border segments, i.e., those nodes that are not core, but such 
that there is a path in the reachability graph from them to a core 
segment, and the noise segments, which are all other segments 
that are neither core nor border. Then, by doing successive BFS 
traversals on the reachability graph starting from different core 
segments p, it is possible to identify all the nodes reachable from 
p, which are the members of the cluster to which p belongs. 

B. Partitioning Stage 

The first stage of GTraclus partitions the input trajectory 
dataset D using the GPU-Partition function called in Line 1 of 
the function GTraclus in Algorithm 1. Given a trajectory T = T1, 
T2, …, Tsize(T), partitioning T according to the MDL principle 
consists in finding a subsequence {��� , ��� , … , �����} of points 

of T, each of which is called a characteristic point, such that the 
MDL cost, defined as L(H) + L(D|H) is minimized, where L(H) 
and L(D|H) are defined as: 

	
�� = � log� �	����ℎ �����������                  � �
!"#  

	
$|�� = � � log� �&' ���� ����� , �(�()#������ #
("��

� �
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+ log� �&+ ���� ����� , �(�()#�� .  
In the above definition, �������� denotes the segment from 

���  to ����� and 	����ℎ ���� ������ is the Euclidean distance be-

tween its endpoints, &' is the orthogonal distance [17] between 

two segments 	- and 	! where ‖	-‖ ≥ 0	!0, and it is defined as 

follows: &'1	- , 	!2 = 
3'#� + 3'�� � / 
3'# + 3'��, where 3'#  is 

the distance from one of the endpoints of 	!  to 	- , 3'�  is the 

distance from the other endpoint of 	!  to 	- .  Also, &+  is the 

angular distance between those two segments and is defined as: 

&+1	- , 	!2 = 5 0	!0 ∙ sin
:� , ;< 0 ≤ : ≤ ? 2⁄
0	!0,                 ;< ? 2⁄ ≤ : ≤ ?. 

To solve the MDL trajectory partitioning problem, we fol-
low Traclus’s approximate partitioning algorithm [8]. We paral-
lelize the problem on the GPU by assigning different trajectories 
to different threads. The first step in GTraclus’s partitioning 
stage is to calculate the number of segments for each trajectory, 
which is done by the CountPartitions kernel. In this kernel, each 
thread is in charge of sequentially traversing the points of its as-
signed trajectory seeking for characteristic points. The number 
of characteristic points determines the number of segments of a 
trajectory. This kernel, called in Line 2 of the Function GPU-
Partition in Algorithm 1, returns the array dSegs containing the 
number of segments for each trajectory.  

Once the number of segments for each trajectory is known, 
it is possible to actually allocate space in the GPU’s global 
memory to hold the trajectory segments. To accomplish this, an 
inclusive scan is executed over the array dSegs, as shown in Line 
4 of the Function GPU-Partition in Algorithm 1. This operation 
can be performed efficiently on GPUs and is used in this case to 
compute the offsets in the segments array in which each trajec-
tory’s segments will reside. The original dataset is then 

discarded to free GPU memory. As mentioned, the segments are 
computed and stored using Traclus’s approximate partitioning 
algorithm in parallel, as shown in Lines 5–8 of GPU-Partition. 

By first counting the number of partitions, allocating space 
for the results on the host and then calculating and saving those 
partitions in GPU memory, the partitioning stage can take place 
entirely in GPU memory. If each thread allocated its own sepa-
rate space for the segments of its trajectory, each partition would 
be in an independent location in memory and the host, and future 
kernels would have to deal with different data locations. The 
strategy of maintaining all of the segments in one array indexed 
by dSegs ensures that the partitions are aligned in one array and 
in contiguous memory for use in the following kernels. 

C. Grouping Stage 

In the grouping stage, called in Line 2 of the GTraclus func-
tion in Algorithm 1, the line segments produced by the partition-
ing stage are clustered. To do this, we present a new density-
based segment clustering algorithm for GPUs. Unlike the exist-
ing G-DBSCAN [22], which is designed for density-based clus-
tering of points, the algorithm proposed here clusters trajectory 
segments, which poses a different challenge concerning the ar-
rangement of data in memory in order to guarantee global 
memory coalescing in the GPU.  

In Line 1 of the procedure G-TrajScan in Algorithm 2, our 
proposed algorithm creates a density-connectedness graph 
whose vertices are the segments of all trajectories. There exists 
an edge between any two vertices in this graph if and only if 
their corresponding segments lie within an Epsilon distance of 
each other, measured according to the segment distance of 
Traclus [8]. Once this graph is created, GTraclus performs a se-
quence of parallel breadth-first searches (BFS) on the segments 
in order to find segment clusters; each separate BFS search gives 
rise to a different trajectory cluster. This strategy is highly 
efficient on GPUs because the large amount of distance 
calculations between trajectory segments can be parallelized. 
Given any vertex, all other vertices that are reachable from it, 
meaning that there is a path in the graph between them, are 

Function GTraclus (Trajectory Set D, Double epsilon, Double 
minLines) 
Performs local trajectory clustering on D in the GPU using the 
values of Epsilon and minLines 

1. segments ← GPU-Partition(D) 
2. labels ← G-TrajScan(segments, epsilon, minLines) 
3. return (segments, labels) 

 

Function GPU-Partition (Trajectory Set D) 
Each trajectory in D is partitioned in parallel according to the MDL 
principle 

1. for each trajectory t in D do in parallel 
2.     dSegs[t] ← CountPartitions(t) 
3. done 

4. dSegs ← InclusivePrefixSum(dSegs) 
5. for each trajectory t in D do in parallel 
6.     segments ← FillPartitions(t, dSegs) 
7. done 

8. return segments 

Algorithm 1. Pseudo-code of the GTraclus Algorithm 



labeled as members of the same cluster. All the segments that 
are not part of any cluster are labeled as noise. 

Since our proposed segment clustering algorithm clusters 
line segments, it stores for each segment the coordinates of its 
start and end points, the index of the trajectory to which it be-
longs, and the identifier of the cluster to which it will belong. To 
this end, Lines 1–4 of the Make-Graph function in Algorithm 2 
count the number of segments within an Epsilon distance of each 
segment, then Line 5 computes a prefix sum over the number of 
neighbors of each segment with the purpose of allocating space 
for the adjacency matrix. Lines 6–11 then compute the adja-
cency matrix by checking in parallel which segments are within 
an Epsilon distance for each node. 

Once the reachability graph is created, a GPU-based BFS is 
initiated in Line 2 of the G-TrajScan procedure in Algorithm 2. 
Each core segment (line segments with at least minLines many 
segments within a segment distance of Epsilon) will become the 
starting point of a BFS search and each thread goes into the 
adjacency lists of density-connected line segments and marks 
them as visited (Lines 1–8 in the Identify-Clusters procedure of 
Algorithm 2). All density-connected line segments [23] get the 
same cluster label, and the process is conducted in parallel. Once 
all segments are marked as visited, the algorithm concludes, and 
clustering data is provided as output. The GPU-BFS is designed 
as a sequence of BFS kernel calls where each thread is assigned 
a node on the frontier, which consists of the nodes in the 
adjacency list of the previous frontier, until the entire frontier is 
explored. This allows the GPU to explore the entire frontier of 
the breadth-first search at the same time. 

Since each thread performs each one of the calculations in 
parallel, the threads can make full use of their local thread 
registers to store and sum the distance and vector calculations. 
These calculations are designed to contain no branching logic so 
different thread instructions will not diverge, allowing the GPU 
to achieve high performance. Since all of the partitioned line 
segments are stored in a single array and threads access this 
array in a serial fashion when loading the partitions to perform 
distance calculations, the GPU is able to coalesce the data 
transfers from global memory. 

IV. PERFORMANCE ANALYSIS 

In this section, we describe the datasets, hardware and the 
setup used in the experiments presented in this paper. We com-
pare GTraclus against MC-Traclus, a multicore algorithm based 
on Traclus that we wrote for this purpose and that in these ex-
periments we run with 24 threads. MC-Traclus is identical to 
Traclus, except it parallelizes the distance computation between 
segment pairs by assigning different threads to different pairs. 

A. Datasets 

For our experiments, we used two real datasets: Geolife [2] 
and the Taxi Service Trajectory Prediction Challenge dataset 
[11], which we will refer to as Porto. GeoLife contains the 
trajectories of people and cars as they move through the city of 
Beijing, while the Porto trajectories log taxis as they move 
through the city of Porto in Portugal. Both datasets contain a 
considerable amount of trajectory data, Geolife has 17,621, 
which were broken down into over 100,000 trajectories, and 

Procedure G-TrajScan (Segment Set D, double Epsilon, dou-
ble minLines) 
Performs the grouping stage of GTraclus on D in the GPU using 
the values of Epsilon and minLines 

1. graph ← Make-Graph(D, Epsilon, minLines) 
2. labels ← Identify-Clusters(graph, Epsilon, minLines) 
3. return labels 

 

Function Make-Graph (Segment Set D, double Epsilon, double 

minLines) 
Constructs the reachability graph on the set of segments D 

1. for p in D do in parallel numNeighbors[p] ← 0 end for 
2. for each pair(p,q) of segments in D do in parallel 

3.     if dist(p,q) < Epsilon then numNeighbors[p]++ end if 

4. done 

5. startPos ← ExclusivePrefixSum(numNeighbors) 
6. for each pair(p,q) of segments in D do in parallel 

7.     if dist(p,q) < Epsilon then 

8.         Add q to the adjacency list of p and vice versa 

9.     end if 

10. end for 

11. return new Graph(adjacency, startPos) 

 

Procedure Identify-Clusters (Graph G, double Epsilon, double 

minLines) 
Performs a BFS on the graph G in order to discover clusters  

1. clusterID ← 0 

2. for each node v do visited[v] ← false done 

3. for each node v in G do 
4.     if not visited(v) and v is a core segment then  

5.         visited[v] ← true; labels[v] ← clusterID 

6.         GPU-BFS(v, G, Epsilon, minLines, clusterID++) 
7.     end if 

8. done; return labels 

 

Procedure GPU-BFS (Node v, double Epsilon, double min-

Lines, integer clusterId) 
Performs a BFS on the graph G in order to discover clusters 

1. Initialize array F[1..graph.numNodes] with false values 
2. Initialize array V [1..graph.numNodes] with false values 

3. F[v] ← true // Put node v in the frontier 

4. while F has some node with a value of true do  
5.     GPU-BFS-Kernel(graph, Epsilon, minLines, F, V) 
6. done 

7. Bring the V array from the GPU to the host 
8. for each node n in the graph G do 
9.     if V[n] then 

10.         label[n] ← clusterID; visited[n] ← true 

11.     end if 

12. done 

 

Kernel GPU-BFS-Kernel (Graph G, double epsilon, double 

minLines, Array of boolean frontier, Array of boolean visited) 
GPU Kernel that assists GPU-BFS in performing a BFS search  

1. if frontier[tID] then 

2.     frontier[tID] ← false; visited[tID] ← true 

3.     for each neighbor n of the node with identifier tID do 

4.         if not visited[n] then frontier[n] ← true end if 

5.     done 

6. end if 

 
Algorithm 2. Pseudo-code of the G-TrajScan Algorithm 



Porto has 1.7 million trajectories. Geolife occupies 700 MB and 
Porto occupies 1.8 GB. Each dataset is kept in the GPU’s global 
memory. 

B. Hardware 

Our experiments were performed on a machine with Ubuntu 
18.04 using CUDA 10. The hardware used was two Intel Xeon® 
6136 processor and an NVIDIA Tesla V100 GPU with 16 GB. 

C. Parameters 

For DBSCAN, as the minLines parameter decreases and the 
epsilon parameter increases, the number of resulting clusters 
approaches one. We employ realistic measurements for both as 
default parameters for our tests. The parameters used in our ex-
periments are presented Table I along with their default values 
indicated in bold. 

TABLE I.  DEFAULT PARAMETERS 

Parameter Name Values 

Epsilon 10-4, 10-3, 10-2, 0.1, 1, 10, 102 

minLines 100, 200, 300, 400, 500, 600 

Num. of Trajectories 101, 102, 103, 104, 105 

GPU Threads Per Block (GTraclus) 512 

Num. of CPU Threads (MC-Traclus) 24 

D. Performance Measure 

In our experiments, the performance measure is the total 
execution time of the algorithm measured from the moment 
when it starts executing until the moment when the results are 
available in the host. Each query was run 5 times and we report 
the average of these 5 executions. 

E. Experimental Results 

In this section, we describe the impact of the parameters on 
the performance measures of the competing algorithms. 

1) Impact of the Number of Trajectories 

In this section, we describe the impact of the number of tra-
jectories to cluster on the performance of each algorithm. 
Increasing the number of trajectories affected the processing 
time of both MC-Traclus and GTraclus, and while the MC-
Traclus outperforms GTraclus for a small number of trajectories, 
GTraclus performs much better for large trajectory datasets.  

Figure 1(a) shows the results of MC-Traclus and GTraclus 
executed on the Porto taxi dataset. In this figure we see that for 
fewer than 1,000 trajectories, the multicore CPU MC-Traclus 
performed faster than GTraclus, the latter performing 7.8X 
slower (5 ms versus 39 ms) for 100 trajectories. GTraclus 
however, started gaining advantage over MC-Traclus for da-
tasets with over 1,000 trajectories, performing 5.5X faster for 
10,000 trajectories and 22X faster for 100,000 trajectories. The 
reason for this is the GPU's parallel architecture is able to effec-
tively support the independent distance calculations that G-
DBSCAN utilizes. Every thread measures the parallel, 
perpendicular, and angular distances [8] independently and 
using hundreds of threads and overcomes the overheads 
produced by the memory transfers between main memory and 
device memory. In Figure 1(b), it is possible to see similar re-
sults for the Geolife dataset, where the performance improve-
ment of GTraclus over MC-Traclus is even more pronounced 
than in the Porto dataset: GTraclus performs better starting from 
100 trajectories instead of 1,000, and achieving up to 24X faster 
execution time than MC-Traclus for 100,000 trajectories. This 
is because each trajectory has fewer points compared to the 
Porto dataset, improving the execution time of the partitioning 
step on GPU, which is sensitive to trajectories with many points. 

The partitioning stage on the GPU for 1,000 trajectories 
takes three times as much time as on MC-Traclus. At 10,000 and 
100,000 trajectories it closed this gap and started to perform 
about as well as the original MC-Traclus partitioning 
implementation. This is because partitioning trajectories is a 
semi-sequential process. As mentioned earlier, the partitioning 

 
Figure 1. (a) Impact of the number of trajectories to cluster on the average total execution time in miliseconds in the Porto dataset. (b) Impact of the number of 

trajectories to cluster on the average total execution time in miliseconds in the Geolife dataset. (c) Impact of Epsilon on the average total execution time in 
miliseconds in the Porto dataset. (d) Impact of Epsilon on the average total execution time in miliseconds in the Geolife dataset. (e) Impact of minLines on the 

average total execution time in miliseconds in the Porto dataset. (f) Impact of minLines on the average total execution time in miliseconds in the Geolife dataset. In 
all experiments, 24 threads were used for MC-Traclus. 



stage takes up less than 1% of the total time so a slowdown of 
three times as much, as was observed, is not as significant. 

2) Impacts of Epsilon and minLines 
In this experiment, we assess the impact of the Epsilon and 

minLines parameters on the performance of both algorithms. On 
one hand, we found that there was a significant impact of the 
Epsilon parameter on total execution time, as seen in Figure 1(c) 
and Figure 1(d). As Epsilon became larger, this led to the 
creation of a single large trajectory cluster and to an execution 
time increase of two orders of magnitude. This is due to the 
overhead in computing extremely large neighborhoods and 
performing very large graph searches for huge numbers of 
results. At the extreme parameter values tested, many segments 
that would be classified as noise are included in clusters, and 
many clusters which would be differentiated are included 
together. On the other hand, varying the minLines parameter 
within the range specified had little impact on the performance 
of GTraclus, as seen in Figure 1(e) and Figure 1(f). We conclude 
from these tests that GTraclus performance is resilient to 
extreme parameter values and clustering situations, as the 
change in performance was relatively even across these trials. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we presented a new GPU algorithm for local 
trajectory clustering based on the Minimum Description Length 
principle (MDL). Existing algorithms to solve the problem of 
local trajectory clustering based on this principle, like MC-
Traclus, a multithreaded version of Traclus, do not scale. We 
addressed this gap by effectively parallelizing the distance com-
putations between trajectories in the GPU. GTraclus provides 
the same clustering results as MC-Traclus but for large numbers 
of trajectories, starting around 100 to 1,000 trajectories, it results 
in up to 24X faster execution time than the comparable multi-
core algorithm MC-Traclus. In the future, we would like to 
research the applications of GPU-based processing on fuzzy 
cluster membership of trajectories [18]. 
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