
Mastering the NEC Vector Engine Accelerator
for Analytical Query Processing

Annett Ungethüm, Lennart Schmidt, Johannes Pietrzyk, Dirk Habich, Wolfgang Lehner
Database Systems Group, TU Dresden, Dresden, Germany

{annett.ungethuem,lennart.schmidt1,johannes.pietrzyk,dirk.habich,wolfgang.lehner}@tu-dresden.de

Abstract—NEC Corporation offers a vector engine as a spe-
cialized co-processor having two unique features. On the one
hand, it operates on vector registers multiple times wider than
those of recent mainstream x86-processors. On the other hand,
this accelerator provides a memory bandwidth of up to 1.2TB/s
for 48GB of main memory. Both features are interesting for
analytical query processing: First, vectorization based on the
Single Instruction Multiple Data (SIMD) paradigm is a state-
of-the-art technique to improve the query performance on x86-
processors. Thus, for this accelerator we are able to use the
same programming, processing, and optimization concepts as for
the host x86-processor. Second, this vector engine is an optimal
platform for investigating the efficient vector processing on wide
vector registers. To achieve that, we describe an approach to
master this co-processor for analytical query processing using a
column-store specific abstraction layer for vectorization in this
paper. We also detail on selected evaluation results to show the
benefits and shortcomings of our approach as well as of the co-
processor compared to x86-processors. We conclude the paper
with a discussion on interesting future research activities.

Index Terms—Vectorization, Query Processing, Abstraction

I. INTRODUCTION

Vectorization based on the Single Instruction Multiple Data
(SIMD) parallel paradigm has become a core technique to
improve analytical query processing performance especially
in state-of-the-art in-memory column-stores [1]–[5]. The main
goal of SIMD is to increase the single-thread performance by
executing an identical operation on multiple data elements in
a vector register simultaneously (data parallelism) [6]. Such
SIMD capabilities are common in today’s mainstream x86-
processors using specific SIMD instruction set extensions.
A current hardware trend in this context can be seen in a
growth of these extensions not only in terms of complexity
of the provided instructions but also in the size of the vector
registers [7]. To tackle that SIMD-specific heterogeneity, we
introduced a novel abstraction layer called Template Vector
Library (TVL) for in-memory column-stores [7]. Using that
abstraction layer, we are able to implement hardware-oblivious
vectorized query operators, which can be specialized to dif-
ferent SIMD instruction sets at query compile-time [7].

Furthermore, hardware is also shifting from homogeneous
x86-processors towards heterogeneous systems with different
computing units [8]. In this context, NEC Corporation in-
troduced a novel heterogeneous hardware system called SX-
Aurora TSUBASA consisting of a recent x86-processor as host
and one or multiple strong vector engines as co-processors [9].
Each vector engine operates on vector registers of size 16,384-

bit which is multiple times wider than that of common
x86-processors and provides a total memory bandwidth of
1.2TB/s for a maximum of 48 GB of high bandwidth memory.
By applying our TVL approach to SX-Aurora TSUBASA,
we are able to use the same programming, processing, and
optimization concepts for the host x86-processor as well as for
this accelerator. Additionally, this co-processor is an optimal
platform for investigating the vector processing on extremely
wide vector registers.

Our Contribution: Thus, we present an approach to master
the NEC SX-Aurora TSUBASA vector engine in our devel-
oped SIMD abstraction layer TVL in this paper. This mastering
requires novel concepts to represent and to process masks
for the wide vector registers. Masks are an important part
of vectorization, because they are used for marking which
elements in a vector register the operation has to be applied
to [3]–[5]. Then, we show selected results to highlight the
benefits and shortcomings of the vector engine compared to
SIMD extensions on Intel x86-processors in our evaluation.
Moreover, we discuss interesting research challenges for an
efficient analytical query processing on wide vector registers.

Outline: The remainder of the paper is structured as fol-
lows: In Section II, we briefly introduce our SIMD abstraction
layer TVL and describe the NEC vector engine. Thereafter
in Section III, we present two major steps to master the
vector engine in our TVL. Based on that, we present selected
evaluation results for micro-benchmarks as well as for an
end-to-end evaluation using the Star-Schema-Benchmark in
Section IV. Then, we summarize the paper in Section V.

II. PRELIMINARIES

Analytical queries usually access a small number of
columns, but a high number of rows and are, thus, most
efficiently processed by column-store systems [2], [10]. In
those systems, all values of every column are encoded as a
sequence of integer values, so that the whole query processing
is done on these integer sequences [2], [10]. To increase the
query performance, vectorization is a state-of-the-art optimiza-
tion technique nowadays, because all recent x86-processors
offer powerful SIMD extensions [1]–[5]. To achieve the best
performance, explicit vectorization using SIMD intrinsics is
still the best way [4], [7], whereas intrinsics are functions
wrapping the underlying machine calls. However, these SIMD
extensions are increasingly diverse in terms of (i) the number
of available vector instructions, (ii) the vector length, and (iii)

4

Hardware-Conscious Implementation (Plug-in)

Hardware-Oblivious Column-Store API

Scalar

L/S
Class

Arithmetic
Class

Create
Class

Manipulate
Class

Comparison
Class

Intel
SSE

Intel
AVX2

Intel
AVX512

ARM
Neon

NEC
Vector
Engine

Boolean
Logic
Class

Extract
Class

3

Vector Engine (VE)

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

LLC

HBM2 HBM2 HBM2

Vector
Core

LLC

HBM2 HBM2 HBM2

1.2TB/s3TB/s

(a) Template Vector Library (TVL) (b) Vector Engine Architecture

Fig. 1. Architectures of the Template Vector Library (TVL) and the NEC Vector Engine (VE).

the granularity of the bit-level parallelism, i.e., on which data
widths the vector instructions are executable [7]. To hide this
heterogeneity, we developed a specific abstraction layer called
Template Vector Library (TVL) for column-stores [7].

A. Template Vector Library

Our abstraction approach follows a separation of concerns
concept as shown in Fig. 1(a). On the one hand, it offers
hardware-oblivious but column-store specific primitives, which
are similar to intrinsics. In that sense, the state-of-the-art
vectorized programming approach does not change, but the
explicit vectorization can be done in a hardware-independent
way. Moreover, we organized the necessary primitives in seven
classes like load/store or an arithmetic class for a better
organization including a unified interface per class [7]. On
the other hand, our TVL is also responsible for mapping
the provided hardware-oblivious primitives to different SIMD
extensions. For this mapping, our TVL includes a plug-in
concept and each plug-in has to provide a hardware-conscious
implementation for all primitives.

From an implementation perspective, our abstraction con-
cept is realized as a header-only library, where the hardware-
oblivious primitives abstract from SIMD intrinsics. These
primitives are generic functions representing a unified interface
for all SIMD architectures. In addition to the primitives, we
introduced generic datatypes:
base t: The base type can be any scalar type.
vector t: The vector type contains one or more values of the

same base type.
mask t: A mask is a scalar value, which is large enough to

store one bit for each element in a vector.
Using the provided primitives and the data types, we can

implement columnar query operators in a hardware-oblivious
way. For the hardware-conscious mapping, we use template
metaprogramming requiring hardware-conscious implementa-
tions for all primitives and for all underlying SIMD extensions.
This function template specialization has to be implemented,
whereby the implementation depends on the available func-
tionality of the SIMD extension. In the base case, we can
directly map a TVL primitive to an SIMD intrinsic. However,
if the necessary SIMD intrinsic is not available, we are able

to implement an efficient workaround in a hardware-conscious
way. This implementation is independent of any query operator
and must be done only once for a specific SIMD extension.

B. NEC Vector Engine

NEC Corporation developed a new vector engine (VE) as
co-processor and the architecture of this VE is illustrated in
Fig. 1(b). The VE consists of 8 vector cores, 6 banks of
HBM2 high speed memory, and only one shared last-level
cache (LLC) of size 16MB. The LLC is on both sides of the
vector cores, and it is connected to each vector core through
a 2D mesh network-on-chip with a total cache bandwidth of
3TB/s [9]. This design provides a memory bandwidth of up
to 1.2TB/s per vector engine [9]. Each vector core consists
of three core units: (i) a scalar processing unit (SPU), (ii) a
vector processing unit (VPU), and (iii) a memory addressing
vector control and processor network unit (AVP). The SPU
has almost the same functionality as modern processors such
as fetch, decode, branch, add, and exception handling, but the
main task is to control the status of the vector cores.

The VPU has three vector fused multiply add units, which
can be independently executed by different vector instructions,
whereby each unit has 32 vector pipelines consisting of 8
stages [9]. The vector length of the VPU is 256 elements. One
vector instruction executes 256 arithmetic operations within
eight cycles [9]. The major advantage, compared to wider
SIMD functionalities e.g., in Intel processors like AVX-512,
is that the operations are not only executed spatially parallel,
but also temporally parallel, which hides memory latency
better [9]. Each VPU has 64 vector registers and each vector
register is 2Kb in size (32 pipeline elements with 8 Byte per
element). Thus, the total size of the vector registers is 128Kb
per vector core, which is larger than an L1 cache in modern
x86-processors. To fill these large vector registers with data,
the LLC is directly connected to the vector registers with a
bandwidth of roughly 400GB/s per vector core [9].

In [11], we presented a comprehensive experimental eval-
uation of this VE for analytical queries using selective in-
memory column-store operators. In particular, we showed the
benefits of this VE compared to regular SIMD extensions in
single-threaded as well as multi-threaded environments.

vr vy = v e l v s f a v v s s l (p vec , 3 , r e i n t e r p r e t c a s t <u i n t 6 4 t >(p D a t a P t r) , e l e m e n t c o u n t) ;
re turn v e l v g t v v s s l (vy , 0 , 0 , e l e m e n t c o u n t) ;

Fig. 2. The gather implementation for 64-bit values on the NEC vector engine involves two intrinsics and an additional vector register. In a first step,
element count addresses are determined, from which data is read in the second step. P vec is a function parameter containing the index offsets. P DataPtr
is also a function parameter pointing to an address in memory, from where the data should be gathered.

III. MASTERING NEC VECTOR ENGINE

The focus of this paper is to present an approach to fully
support the NEC VE in our TVL as highlighted in Fig. 1.
For that, we created a VE-specific hardware-conscious im-
plementation of the hardware-oblivious interface. Apart from
mapping to abstract datatypes as explained above, this requires
(i) a hardware-conscious realization of the provided primitives
and (ii) additional primitives to work with large masks.

A. Hardware-Conscious Primitive Implementation

For the hardware-conscious implementation, we have to
distinguish three different main groups of primitives across
all TVL classes [12]: (i) load/store primitives, (ii) element-
wise primitives, and (iii) horizontal primitives. The hardware-
specific implementation for them on the VE can be done by
using a limited number of intrinsics supporting only 32-bit and
64-bit data widths. An overview of these intrinsics and their
asm mapping can be found on the developer’s github page1.

1) Load/Store Primitives: Load and store primitives are
required to get data either into or out of vector registers,
whereas the source or destination can be main memory or
a scalar value on the stack. The primitives for loading or
storing data sequentially can directly be mapped to a single
intrinsic. The same holds true for broadcasting a scalar value
into a vector register. However, primitives including random
memory access, require a workaround. For instance, the gather
primitive uses two intrinsics and an additional vector register.
The corresponding source code for 64-bit values is shown in
Fig. 2. Because of the different interfaces and data locations,
we separated the Load/Store primitives into 3 different TVL
classes as shown in Fig. 1:

• Load/Store (L/S) For all primitives involving main mem-
ory access, e.g., load, store, gather.

• Create For filling a vector with immediate values or the
contents of variables, e.g., set sequence.

• Extract For extracting scalar values from a vector. This
class only contains a single primitive: extract value.

2) Element-wise Primitives: Element-wise primitives are
characterized by the feature that they do not introduce depen-
dencies between the elements of the same vector register, e.g.,
element-wise arithmetic, comparisons, or boolean logic. For
arithmetic operations or boolean logic, the primitives return
another vector, while comparisons return a bitmask. Those
primitives returning a vector, can directly be mapped to an
intrinsic. However, primitives returning a bitmask involve at
least two intrinsics: (i) a maskable function, which fills a
vector register with a positive value, 0, or a negative value,
depending on the result of an element-wise vector comparison,

1https://sx-aurora-dev.github.io/velintrin.html. A more thorough insight into
the instruction set may be found in the manual [13].

and (ii) a function creating a mask out of this result. According
to the different interfaces and purposes of the element-wise
primitives, we divided them into 3 TVL classes: arithmetic,
logic, and comparison.

3) Horizontal Primitives: Horizontal primitives do not treat
the elements of a vector independently. Examples are (i) the
horizontal addition, (ii) the compress-store storing selected
vector elements sequentially, or (iii) a rotation of the vector
elements. All of these primitives require a workaround on
the NEC VE since they are not supported natively. The
workaround for the horizontal addition uses a first intrinsic
to sum up all elements in a vector register, and a second
intrinsic to extract the result of this operation out of the vector
register. While the horizontal addition fits into our arithmetic
TVL class, and the compress-store is realized as a part of our
load/store class, the rotation is a part of the manipulate class.
This class contains primitives, which change the sequence of
the elements within a vector register.

As expected, the hardware-conscious implementation is
more or less straightforward. However, the limited number of
vector instructions exposed by the intrinsics leads to the fact
that some primitives can only be realized via workarounds.

B. Enhanced Mask Primitives
When implementing vectorized column-store operators us-

ing primitives or intrinsics, bitmasks (or masks in short) often
have to be used and combined, e.g., by shifting them or using
boolean logic [3]–[5]. A simple example is a variant of the
vectorized intersection of two index lists [12]:

1) An initial bitmask is set to 0.
2) Then, the outer loop broadcasts the current value of one

index list into a vector register A.
3) The inner loop sequentially loads values from the second

index list into a vector register B.
4) Registers A and B are compared. The result is a bitmask.
5) If a match was found, the inner loop stops, the initial

bitmask is shifted by one bit, and a logical OR is
performed on the shifted initial mask and the result mask.

6) When there are no more values left in the second index
list and there has still been no match, the result mask
remains 0.

7) Finally, the next iteration of the outer loop starts with an
incremented pointer to the data of the first index list. The
pointer to the data of the second index list is reset to the
position of the last match.

8) The steps 2-7 are repeated until the initial bitmask was
shifted completely, e.g., until a 64-bit mask was shifted
63 times. Then the outer loop stops and the values from
the first relation are stored according to the bits set in
the initial bitmask. This is done using the compress-store
primitive.

Fig. 3. Comparing the hardware-conscious implementations of AVX-512 with NEC VE in terms of mappings.

The vectorized intersection contains 3 operations on masks.
In step 0, the mask is initialized. In step 5, a mask is shifted
and then combined with another mask via a logical OR. These
operations are common on scalar values, but a scalar value can
only hold up to 64 bits. Thus, when a vector register contains
more than 64 values, a scalar is not sufficient anymore.

For NEC VE holding up to 256 elements, the mask contains
256 bit, which are stored in dedicated mask registers. The
scalar operations on these masks are not defined, but there
are already primitives performing these operations on vector
registers. A logical step to add the missing functionality in our
TVL, is to explicitly create these primitives for mask registers
allowing a direct use instead of the standard operators.

The complexity of the hardware-specific implementations of
these mask primitives varies. For all masks containing 64 bit
or less, it is a simple fallback to the scalar operators. With the
256-bit mask on the NEC VE, direct mappings to intrinsics are
sometimes possible. For instance, in our example, we could
directly map the initialization of the mask (step 0) and the
logical OR (step 5) to intrinsics. However, shifting left by
one bit across 8 Byte lane boundaries requires a workaround
involving the following steps:

1) Copy the mask into a 4 x 64 bit array A.
2) Copy the mask into a second array B, but increase the

destination index by 1, such that the least significant value
remains empty.

3) Set the least significant 64 bit of array B to 0.
4) Shift all elements in array A left by 1 bit.
5) Shift all elements in array B right by 63 bit (carry).
6) Perform a logical OR on array A and array B.
7) Write the result from step 6 back into a mask register.

Obviously, there are more general solutions for shifts by
larger distances, but since the shift by 1 is by far the most
widely used in our operator implementations, this specialized
solution makes sense. For completeness, the source code for
the mentioned mask primitives is shown in Fig. 4.

C. Summary

To fully support the NEC VE in our TVL, we (i) im-
plemented a hardware-conscious realization of the provided
hardware-oblivious primitives and (ii) added additional prim-
itives to work with large masks. Fig. 3 compares the NEC
VE with the AVX-512 hardware-conscious realization for 64-
bit data widths in terms of mapping quality. For example,
the four load/store TVL primitives can be directly mapped to
SIMD intrinsics in the case of AVX-512, while in the case of
NEC VE, two primitives require workarounds using intrinsics.
The same behavior is observable for the other TVL classes

/ / B i t w i s e OR on masks
re turn vel orm mmm (p mask1 , p mask2) ;

/ / I n i t i a l i z e mask w i t h 0
re turn v e l v f m k l a f m l (e l e m e n t c o u n t) ;

/ / S h i f t mask by 1 b i t
u i n t 6 4 t masks [4] ; u i n t 6 4 t m a s k s c a r r y [4] ;
m a s k s c a r r y [3] = 0 ;
f o r (unsigned i =0 ; i <3; i ++){

m a s k s c a r r y [2− i] = vel svm sms (p mask , i) ;
m a s k s c a r r y [2− i] = m a s k s c a r r y [2− i] >> 63 ;}

f o r (unsigned i =0 ; i <4; i ++){
masks [3− i] = vel svm sms (p mask , i) ;
masks [3− i] = masks [3− i] << 1 ;
masks [3− i] |= m a s k s c a r r y [3− i] ; }
vm256 f i n a l m a s k = v e l v f m k l a f m l (2 5 6) ;

f o r (unsigned i =0 ; i <4; i ++){
f i n a l m a s k =

vel lvm mmss (f i n a l m a s k , i , masks [3− i]) ; }
re turn f i n a l m a s k ;

Fig. 4. The hardware-conscious implementation of different mask primitives
on the NEC VE. While some primitives map directly to an intrinsic, others
require workarounds.

with an exception for the extract class. Here, the included
primitive requires a workaround with a significant amount of
scalar code for AVX-512, i.e., a switch-case statement, while
it can be mapped to an intrinsic for NEC VE. However, our
NEC VE hardware-conscious implementation requires more
workarounds than the AVX-512 implementation.

IV. EVALUATION

Our entire evaluation is based on MorphStore, which is
an in-memory columnar analytical query engine completely
implemented using TVL [3]. All experiments were conducted
on a NEC-SX Aurora TSUBASA machine equipped with (i) an
Intel Xeon Gold 6126 processor with 96GB of main memory
as vector host (VH) and (ii) a single vector engine (VE) with
24GB of main memory with a maximum memory bandwidth
of 750GB/s. While the VH features all Intel SIMD extensions
SSE (128-bit), AVX2 (256-bit) and AVX-512 (512-bit), the
VE operates on vector registers of size 16,384-bit. Since the
main goal of vectorization is to increase the single-thread
performance, all experiments were executed single-threaded
on unsigned 64-bit integers and happened entirely in-memory.

A. Micro-Benchmarks

Our micro-benchmarks investigate single query operators
and simple queries on synthetically generated data.

Fig. 5. Speedups for different operators. The benefit of vectorization depends on the operator.

Fig. 6. Runtime comparison of a simple aggregation-query between VE and
VH (AVX-512). The selectivity of the select operator is varied.

1) Operators: In a first set of experiments, we compared
the effect of the vectorized solution to a scalar solution
on an operator level. For that, we ran four different op-
erators: Aggregation, Projection, Selection, and
Intersection on fixed input sets. Each operator was built
for all available vector sizes, and for scalar processing on
the VE and VH. On the VE, the scalar code runs on the
SPU instead of the VPU. After running the operators, we
computed the speedup for each vector size over its native
scalar processing method. We expect that those operators in-
volving mostly sequential memory access and no workarounds
for the hardware-specific implementations benefit the most
from vectorization. An operator with these properties is the
Aggregation as depicted in Fig. 5(a). While it already
benefits from smaller vector registers on the VH (speedup
between 1.1 and 1.2), the VE fully exploits the potential
of SIMD processing with a speedup of almost 50 compared
to a scalar processing. A similar effect can be observed for
the Projection (Fig. 5(a)), whereby this operator involves
random memory read access but the write access is sequential.

In Fig. 5(b), the speedup of the Select operator is shown
for different selectivities. This operator requires to remove
unmasked elements within a register before storing them. This
primitive is called compressstore being a costly operation not
natively supported by any of the used SIMD instruction sets,
except for AVX512. Thus, the speedup on VE is not as high as
for the previous operators. However, there is still a significant
speedup, which is increased along with the vector size.

Lastly, we run an Intersection as explained in Sec-
tion III-B. The described algorithm for vectorized intersections
is only effective for very low output cardinalities (� 1%
of the input size). For larger cardinalities, more unnecessary

values are read from the main memory the larger the vector
register is. Additionally, workarounds for mask operations are
involved. For these reasons, the intersection (Fig. 5(c)) does
not benefit from vectorization. Moreover, there is a significant
performance loss for large registers.

2) Simple Queries: As we have shown, there are operators
that benefit largely from extremely wide vectors. We used three
of these operators to generate a simple aggregation query for
the next micro-benchmark: a selection, a projection, and an
aggregation. For this query template, we generated two input
columns and varied the selectivity of the selection predicate.
We ran this query on the VH and on the VE. Fig. 6 shows the
execution time for different selectivities on both components.
The graph shows, that the VE offers a robust behavior while
the runtime on the VH increases if the selectivity grows.
Moreover, for large selectivities, the VE outperforms the VH
by a multiple of 3. Note that the runtime on the VE is also
growing linearly, but the rise is too small to be visible.

B. End-to-End Evaluation

In our end-to-end evaluation, we investigated the Star
Schema Benchmark (SSB) [14]. In this paper, we only show
the results for query Q1.1 executed on the VE, whereby we
ran this query on the SPU (scalar execution) and on the VPU
(vectorized execution). All benchmark data (scale factor 1)
was placed beforehand on the VE. Besides the overall query
runtime, we also measured the runtimes of each single query
operator. Fig. 7 shows the results as absolute numbers (left)
and as a percentage of the overall runtime of the query (right).
As shown above, some operators benefit from vectorization
on the VE, while others suffer from a performance loss,
which is also observable here. While the selections take
only a small fraction of the query runtime in the vectorized
query, the intersections and the join operator require
significantly more time than in the scalar query execution.
Vice versa, during scalar query execution, the selections
consume a significant fraction of the overall execution time.
All other operators, i.e., projections, calculations,
and aggregations, are faster on the VPU than on the SPU.
However, because of their comparatively short runtime, they
are barely visible in Fig. 7.

To get the best of both worlds, we combined vectorized
and scalar execution, which can be easily done using our
TVL approach by assigning different template arguments to

Fig. 7. Runtime breakdown of SSB Query 1.1 on the VE: Left: Absolute time for each operator with different instruction sets. Right: Runtime of each
operator relative to overall query runtime. For better identification, each operator has an index. The first query operator, which is executed, is Select 0. The
last executed query operators are Calc 0 and Aggregate 0.

the operator calls. This way, individual query operators are
mapped to different TVL backends during query compile time.
The result of this experiment is shown in the mixed bar of
Fig. 7. With this mixed execution, we are able to decrease the
overall query runtime compared to a full vectorized as well as
to a full scalar execution. We observed the same behavior for
all other queries as well.

C. Lessons Learned and Future Work

Based on our evaluation, we conclude the following two
aspects. On the one hand, extremely wide vector registers can
help to improve the query/operator processing performance.
Unfortunately, that does not hold for all vectorized operators
in a straightforward way. This means that new specialized
processing methods have to be developed to be able to use
extremely wide vector registers efficiently. Important operators
would be intersect or join, because the current implementations
for both operators do not really benefit from larger vectors.

On the other hand, different vector register sizes and
instruction sets can be present on the same system with
the scalar execution as special case with a vector length of
one. As shown in our evaluation, the mixed execution is an
effective optimization approach to decrease the overall query
runtime. This optimization becomes even more interesting in
the context of ARM SVE [15], where the vector length is
an implementation choice ranging from 128 to 2048 bits,
in increments of 128 bits. Thus, this optimization should be
investigated in more detail, for this, our TVL provides the right
foundation.

V. CONCLUSION

NEC Corporation offers a vector engine as a specialized
co-processor having interesting features for an efficient query
processing perspective. To use this vector engine, we described
the mastering using a column-store specific abstraction layer
for vectorization in this paper. As we have shown in the eval-
uation, the vector engine has some benefits and shortcomings
compared to SIMD extensions on Intel x86-processors and our

approach opens up a rich bouquet of opportunities for future
research activities.

REFERENCES

[1] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column oriented
database systems,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1664–1665,
2009.

[2] D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden,
“The design and implementation of modern column-oriented database
systems,” Found. Trends Databases, vol. 5, no. 3, pp. 197–280, 2013.

[3] P. Damme, A. Ungethüm, J. Pietrzyk, A. Krause, D. Habich, and
W. Lehner, “Morphstore: Analytical query engine with a holistic
compression-enabled processing model,” Proc. VLDB Endow., vol. 13,
no. 11, pp. 2396–2410, 2020.

[4] O. Polychroniou and K. A. Ross, “VIP: A SIMD vectorized analytical
query engine,” VLDB J., vol. 29, no. 6, pp. 1243–1261, 2020.

[5] J. Zhou and K. A. Ross, “Implementing database operations using SIMD
instructions,” in SIGMOD, 2002, pp. 145–156.

[6] C. J. Hughes, Single-Instruction Multiple-Data Execution, ser. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers,
2015.

[7] A. Ungethüm, J. Pietrzyk, P. Damme, A. Krause, D. Habich, W. Lehner,
and E. Focht, “Hardware-oblivious SIMD parallelism for in-memory
column-stores,” in CIDR. www.cidrdb.org, 2020.

[8] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” IEEE Micro,
vol. 32, no. 3, pp. 122–134, 2012.

[9] K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa,
M. Yokokawa, T. Aoyama, M. Sato, and H. Kobayashi, “Performance
evaluation of a vector supercomputer sx-aurora TSUBASA,” in SC,
2018, pp. 54:1–54:12.

[10] F. Faerber, A. Kemper, P. Larson, J. J. Levandoski, T. Neumann, and
A. Pavlo, “Main memory database systems,” Found. Trends Databases,
vol. 8, no. 1-2, pp. 1–130, 2017.

[11] J. Pietrzyk, D. Habich, P. Damme, E. Focht, and W. Lehner, “Evaluating
the vector supercomputer sx-aurora TSUBASA as a co-processor for
in-memory database systems,” Datenbank-Spektrum, vol. 19, no. 3, pp.
183–197, 2019.

[12] B. Schlegel, R. Gemulla, and W. Lehner, “Fast integer compression using
SIMD instructions,” in DaMoN@SIGMOD, 2010, pp. 34–40.

[13] NEC Corporation, SX-Aurora TSUBASA Architecture Guide, revision
1.1, 2018. [Online]. Available: https://www.hpc.nec/documents/guide/
pdfs/Aurora ISA guide.pdf

[14] J. Sanchez, “A review of star schema benchmark,” CoRR, vol.
abs/1606.00295, 2016.

[15] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Prémillieu, A. Reid, A. Rico,
and P. Walker, “The ARM scalable vector extension,” IEEE Micro,
vol. 37, no. 2, pp. 26–39, 2017.

