
Performance Analysis of Big Data ETL Process
over CPU-GPU Heterogeneous Architectures

Suyeon Lee
Sogang university, Seoul, Korea

leesy0506@sogang.ac.kr

Sungyong Park
Sogang university, Seoul, Korea

parksy@sogang.ac.kr

Abstract—While GPUs have been utilized in the analysis stage
of big data processing, the demand for GPU use in the extract-
transform-load (ETL) stage has recently been increasing. There
have been several research efforts to use GPUs for query pro-
cessing in database systems. However, most of them are mainly
focused on batching input data as much as possible to increase the
overall throughput with GPUs. Moreover, they try to execute a
query plan by only using a single device (only CPU or only GPU),
based on the assumption that the PCIe transfer overhead between
CPU and GPU is significant. In contrast, this paper presents
several interesting observations and reveals that it is better to
use a CPU-GPU heterogeneous query plan in some cases. For
example, the heterogeneous query plan proved to be efficient
when the input data size is small. This is because the PCIe
overhead is not as serious as expected for small-sized data and
can be offset with performance gains by partially using the GPU.
In addition, even when the data size is large, it is sometimes better
to use the CPU-GPU heterogeneous query plan rather than only
the GPU plan, since some relational operations prefer the CPU
over the GPU. To demonstrate these uses, this paper presents
several experimental results and their analyses with Spark SQL
in a CPU-GPU heterogeneous computing environment.

Index Terms—Big Data, ETL, Spark SQL, GPU

I. INTRODUCTION

1 Big data processing is generally divided into an extract-
transform-load (ETL) stage and an analysis stage. In the
ETL stage, big data platforms receive raw data, perform pre-
processing on the received data, and then store the results in
a separate data sink. In the analysis stage, machine learning
or graph processing jobs are executed on the data generated
by the ETL stage. Due to the volume of data handled at the
same time and its iterative nature, the use of GPUs has been
an active research area, mainly in the analysis stage.

Attempts to introduce GPUs at the ETL stage have only
been made recently. Since managing and cleaning up the re-
ceived data are the main concerns at the ETL stage, most of the
tasks rely heavily on the existing query operations developed
for database systems. However, two problems arise, since the
characteristics of the big data environment are overlooked.
The first is that many studies focus only on large batch data
to increase the overall throughput with GPUs. This is not
suitable for big data environments where the requirements for
input data size change frequently. For example, in the case
of streaming processing, which is common in the big data
environment, processing small amounts of data continuously

1This work was supported by IITP grant funded by MSIT (No. 2014-0-
00035, Research on High Performance and Scalable Manycore Operating
System).

in real-time is important. However, previous studies are often
limited to either a workload with initially large input data [1]
[2], or the case where the data is artificially made bigger so
that the GPU can handle them properly [3] [4]. The second
is that the PCIe transfer overhead is excessively considered
in a system design, since it is usually referred to as one of
the biggest bottlenecks between the CPU and the GPU. For
this reason, many studies choose a method to make the best
use of a single device during the entire query process. That
is, while one query job is being executed, all operations are
executed either only with the CPU or only with the GPU [5]
[6]. Although there was a recent study on separating operations
between the CPU and the GPU in a streaming process [7], it
was proposed over an integrated GPU architecture where both
CPU and GPU share system memory and there is no PCIe
overhead at all.

In contrast, this paper reveals that the CPU-GPU heteroge-
neous query plan is suitable for the ETL stage in the big data
environment. We justify our approach from two perspectives.
First of all, when the data size is small, it is better to run
query operations on the CPU than on the GPU in terms
of total execution time. Our results also show that CPU-
GPU heterogeneous query plans, which offload only partial
operations to the GPU, often give the best performance. This
indicates that there are different device preferences for each
query operation. Besides, CPU-GPU heterogeneous computing
is convincing because the PCIe transmission time is not as
severe as expected when the data size is small. Therefore, this
overhead is negligible compared to the performance gain by
the partial use of the GPU. Even with large data, there are still
tasks that prefer CPU over GPU depending on the workload.
Therefore, the CPU-GPU heterogeneous query plan can show
better performance in many respects than blindly executing all
query operations on a single device.

To prove this, we conducted various experiments using
Apache Spark SQL [8] that supports CUDA-based GPU
acceleration from Spark 3.0.0 released in June 2020.

This paper makes the following specific contributions.
• This work is the first attempt to analyze problems when

the GPU is applied to the ETL stage.
• This work reveals the necessity of the CPU-GPU hetero-

geneous query plan at the ETL stage.
• This work is the first analysis of GPU acceleration in

Spark SQL, both on a single machine and a cluster. Our
observations can answer many open questions regarding
performance maximization in Spark SQL.



• This work uses workloads from the TPC-DS bench-
mark [9], a state-of-the-art decision support benchmark,
and also queries selected according to specific criteria
rather than random queries.

II. MOTIVATIONS AND RELATED WORK

Motivations. In the field of big data processing, there have
been numerous attempts to introduce GPUs as accelerators.
So far, the focus was mainly on applying GPUs to analytics
aspects such as machine learning applications. However, as
the amount of data increases rapidly, there is a problem that
computing power is insufficient not only at the data analysis
stage, but also in the data preprocessing phase, which is called
the ETL stage. In particular, in the emerging real-time analysis,
the ETL process is a step that occurs every time before the
analysis process, so its acceleration is essential.

The ETL process of big data can be divided into two main
areas. One is batch processing, which processes a large amount
of input data in a single process cycle. The other is stream
processing, which processes small amounts of data in one
process cycle, and there are infinite process cycles with fast
data entry rates. In addition to constant active research on
the batch process, there has been growing demand for stream
processing in recent years. Furthermore, an architecture in
which the two are combined and performed simultaneously
is also emerging [10]. Therefore, the big data processing
framework must consider the size of the data processed in
one process cycle, from very small to very large.
Throughput-oriented Approach. In general, one of the rea-
sons to use GPUs in any area is to improve overall throughput
by increasing computing power. Earlier research efforts [1] [2]
[11] [12] have been focused on this point of view. For this
reason, the input data for the ETL process is limited to large
batch data for processing in the GPU. On the other hand, input
data size in the big data processing area varies and is dynamic,
which means that small data must be considered when using
the GPU. Existing studies have commonly used the batching
method [3] [4] to handle small data so far. In other words,
even when the input data is small, it aggregates the input data
into large data to force an environment that is advantageous to
introduce the GPU. For example, in a streaming environment,
small-sized data must be processed continuously, but [3] [4]
[5] [6] collected input data for a certain period of time to make
a big enough batch to process in the GPU. This method is not
appropriate because it excludes real-time processing, which is
the biggest characteristic of a streaming environment.
Dedicated Use of CPU or GPU. Another problem is that
existing studies consider the PCIe transfer overhead between
CPU and GPU to be extremely large and the main performance
bottleneck. For this reason, they adopted the query granularity
method [5] [6] when assigning tasks to the CPU and GPU,
which means that a specific query is designed to be executed
using only the CPU or only the GPU [13] [14]. The focus
was on how to fully utilize a single device. Recently, [7]
proposed the operation granularity method that distributes
different operations in a single query to different devices.

However, it is based on the integrated CPU-GPU architectures
where both CPU and GPU share the system memory in the
CPU and thereby have no PCIe overheads at all. Meanwhile,
[15] is one of the early attempts to introduce GPUs to Spark,
which focuses on the overall implementation of GPU query
processing in Spark. Although this work suggested CPU-GPU
heterogeneous query plans, it only considered CPU-intensive
operations advantageous to offload to the GPU.
Our Observations. Contrary to previous works, this paper
reveals that CPU-GPU heterogeneous computing can cope
well with extremely small-sized data as well as large amounts
of data. This paper provides a comprehensive evaluation study
using various factors and workloads to show the effectiveness
of a CPU-GPU heterogeneous query plan rather than a plan
using only a single device. This claim is reasonable because
there are apparent device preferences for each operation. Also,
the PCIe overhead is not as much as expected in this process.
The smaller the data size, the stronger the tendency, and even
if the data size increases, the same results are still shown.

III. EXPERIMENTAL SETUP

A. Framework

When processing big data, one of the most important design
issues is to build a system so that data extraction, data trans-
formation, data loading, data analysis, etc. can be processed
at once by pipelining. Spark has emerged as a representative
runner of the big data framework to enable in-memory-based
fast pipeline processing with the support of various libraries.
Also, Spark supports both batch processing and streaming
processing, making it the most appropriate big data processing
framework to address our motivation mentioned in section II.

Among Spark’s various core libraries, Spark SQL [8] is used
in the ETL process for data extraction, data transformation,
and data loading from various sources. When Spark SQL deals
with a relational approach to process data, it establishes a
query plan in four phases to convert the written SQL code into
internal Java code. The first step is to build a logical plan by
parsing SQL statements and resolving references. The second
step is to create an optimized logical plan by using several
query optimization techniques, such as predicate pushdown.
The third step is to create a physical plan by specifying
the functions that must actually be executed to perform the
optimized logical plan. Finally, in the code generation step,
the SQL code is converted into Java bytecode that can be
executed in the Spark JVM.

From Spark 3.0.0, the execution method of the above
query plan can be extended to use GPU in Spark SQL.
NVIDIA’s Spark-Rapids [16], cuDF [17], and CUDA are
used to implement this mechanism. After an optimized log-
ical plan is created, Spark assigns an actionable function to
each operation, and then Spark-Rapids extends this stage to
replace operation functions with GPU versions. Currently, as
long as the function is normally implemented in the Spark-
Rapids library, all operations are unconditionally replaced by
functions using the GPU. In other words, the ETL stage can



TABLE I: TPC-DS workloads: For network-intensive queries,
label is N(query number). Similary, we used I for I/O-intensive
queries, C for CPU-intensive queries. Q88 is network-intensive
and I/O-intensive, thus labeled as NI88.

Query
Number

Characteristics
Query
LabelNumerous

Data Scans
Lots of

Data Shuffling
Numerous

Computations

Q64 X N64
Q94 X N94
Q88 X X NI88
Q78 X I78
Q82 X I82
Q22 X C22
Q67 X C67
Q70 X C70

TABLE II: Execution type definitions used in the experiments.

Execution Type Execution Option

Type1 All CPU
Type2 All GPU
Type3 without GPU CSVScan
Type4 without GPU Filter
Type5 without GPU Project
Type6 without GPU ShuffleExchange
Type7 without GPU HashAggregate
Type8 without GPU BroadcastHashJoin
Type9 without GPU Sort
Type10 without GPU Expand
Type11 Type4 + Type5 + Type7
Type12 Type4 + Type5 + Type7 + Type8

be processed using either only CPU functions or only GPU
functions.

B. Workload

For the workloads of the experiments, we used the TPC-
DS benchmark [9], which is the one most commonly used
for evaluating query processes. For accurate experiments, we
chose queries with specific environments rather than arbitrary
queries. The selected queries were classified as network-
intensive, I/O-intensive, and CPU-intensive queries. We la-
beled each query for convenience and used it in place of a
specific query number in the rest of the paper. It is organized
in Table I. Also, we used scale factors 1, 10, and 100 according
to the experiment, representing raw data size in GB. However,
the batch data size processed by a single core is much smaller,
depending on the workload and configuration.

C. Execution Option

This paper argues that a query plan using a mixture of CPU
and GPU is sometimes preferable to a plan using only one of
the two resources. To investigate this issue, we measured the
execution times for three cases: using only CPU, only GPU,
or both CPU and GPU. For each case, we defined execution
types depending on execution options, which are summarized
in Table II. The first case is Type1, and the second case is
Type2. The third case is divided from Type3 to Type12. When
executing the queries using the GPU, users can specify some
functions not to be offloaded to it. For example, if the user

TABLE III: Configurations for the experiments. The config-
urations are based on Spark 3.0.0, Rapids 0.1.0, cuDF 0.14,
and CUDA 10.1.

Single Machine Configuration

CPU Cores 10
Spark Shuffle Partitions 5
GPU Total Memory 4G
GPU Pinned Memory 1G
Concurrent GPU Tasks 1

Cluster Configuration

Number of Executors 2
Driver Memory 4G
Memory per Executor 12G
CPU Cores per Executor 12
GPU Memory per Executor 8G
GPU Pinned Memory per Executor 2G
Concurrent GPU Tasks per Executor 2
Spark Shuffle Partitions 5
Spark Max Partition Bytes 512M

wants a project function for executing the SELECT operation
to use a CPU other than a GPU, they can submit the entire job
with the option spark.rapids.sql.exec.ProjectExec
turned off. In this way, we measured the execution time when
each function of CSV scan, filter, project, shuffle exchange,
hash aggregate, broadcast hash join, sort, and expand is
not replaced by the GPU. We also observed when multiple
operations are not replaced by the GPU, such as Type11 and
Type12. We averaged the execution times after five iterations
and compared the speedup by normalizing with respect to the
time using only the CPU or only the GPU, depending on the
purpose of an experiment.

D. Testbed Configuration

For the experiments, we configured two types of testbeds
using a single machine and a three node cluster (one master
and two worker nodes). The single machine is equipped with
an AMD Ryzen 5 3600 CPU and NVIDIA GeForce RTX
1650 GPU, where the Spark configurations are summarized
in Table III. For the experiments running in a cluster, we
decided to use two types of cluster configurations to investigate
issues when the performance of the CPU and GPU is not
well balanced in the worker nodes (i.e., fast CPU with less
performing GPU vs. slow CPU with highly performing GPU,
etc.). For instance, each worker node in the first cluster (we
call this Cluster1 in this paper) has an AMD Ryzen 9 3900X
CPU and NVIDIA GeForce RTX 2080 Super GPU, while each
worker node in the second cluster (we call this Cluster2 in
this paper) has an Intel Xeon Silver 4210 CPU and NVIDIA
GeForce RTX 2080 Ti GPU. Both Cluster1 and Cluster2 have
the same Spark configurations described in Table III.

IV. RESULTS

In order to understand the issues that affect the performance
of Spark SQL and to conclude that CPU-GPU heterogeneous
computing is necessary, we conducted the experiments con-
sidering three parameters: batch data size, operation selection,
and overall workload.



Fig. 1: Normalized execution times by varying batch data size
from 1.5 B to 150 MB.

Fig. 2: PCIe overhead ratio by varying batch data size from
1.5 KB to 150 MB.

A. Batch Size per Task

Effect of Batch Data Size. We first varied the batch data size
processed by a task from 1.5 B to 150 MB and compared
the two cases where the GPU is either used or not used in
Figure 1. For the workload, we used simple select-project-join
(SPJ) queries. As shown in Figure 1, if the batch data size is
less than a specific size, in our case about 1.5 MB, it is more
advantageous to use CPU than to use GPU. However, after
that, the effect of GPU use is soaring, so it is more beneficial
to choose a GPU.
PCIe Overheads. We also compared the cases of using only
GPUs and using both CPU/GPU devices in Figure 2 to show
that the PCIe overhead can be ignored when the batch data size
is small. We obtained the PCIe transfer time by calculating the
total amount of time spent on CUDA MEMCPY using NVIDIA
Nsight Systems, a GPU profiler. For the workload, we used the
same SPJ queries as before and the execution types described
in Table II. In Figure 2, the y-axis is the ratio of PCIe overhead
to the entire process, where the value is calculated as follows.

(PCIeTransferT ime / TotalExecutionT ime) × 100

As shown in Figure 2, if the data size is less than 1.5 MB,
the PCIe overhead ratio is small, which is about 0.2~0.3%.
That is, the entire PCIe transfer time is only 500~700 mi-
croseconds, while the total execution time is shown in seconds.
It is noteworthy that the data transfer operation through PCIe
occurs about 500 times in the workload. As the batch data
size increases, the number of operations does not increase,
but the average execution time of a single operation rapidly
increases. For example, if the data size was 1.5 MB, it took 28
microseconds, while it took 266 microseconds for 15 MB, and
2.56 milliseconds for 150 MB. However, if the data size is less
than 1.5 MB, the operating time does not change significantly

between 1 and 2 microseconds. Therefore, the PCIe overhead
can be ignored until the data size reaches a certain point. In
particular, even if queries use both CPU/GPU devices, the
overhead is not significantly enhanced compared to Type2.
Rather, in the case of Type4 and Type7, there is less PCIe
overhead than when using only the GPU.
Summary. Considering that each computing core needs to
process data with various sizes, it is essential to use CPUs with
GPUs in a query process. In such a case, the PCIe overhead
does not have a large amount of impact up to some data size.

B. Operation Selection

In this experiment, selected TPC-DS queries were per-
formed while changing the execution types presented in Ta-
ble II. Figure 3 and Figure 4 show the performance results in
Cluster1 and Cluster2, respectively. Each result is separated
into two tables by a scale factor. The cell color indicates the
speedup compared to Type1. The first column of each table is
the base point and has the brightest color because it only uses
the CPU. The larger the speedup, the darker the color. Some
cells of Type9 and Type10 are gray because they do not use
the corresponding operation of each execution type.
SQL Operations. In Figure 3 and Figure 4, we first classified
which operation would be more advantageous to choose the
CPU instead of the GPU. For this purpose, the results of Type3
to Type10 were analyzed compared to Type2. For Type4,
Type6, and Type7 shown in the left table of Figure 3, there
are many cases where those types perform better than Type2.
For example, in the case of N64, the performance of Type4 is
about 1.28 times better than Type2, Type6 is about 1.38 times
better, and Type7 is about 1.78 times better. In addition, Type
7 shows performance that is faster or comparable to Type 2 in
every case except for C22. Similar results are also shown in the
left table of Figure 4. Therefore, when the data size is small,
filter, shuffle exchange, and hash aggregate operations need to
select a CPU. If the data size gets larger, it is advantageous to
use a GPU in most cases. However, this is not always the case.
In some queries, such as N64, N94, and NI88, corresponding
operations still have the same CPU preferences even when
the scale factor is 10. On the other hand, Type3 and Type9
performed poorly compared to Type2. In the case of the Type3,
the performance drops sharply and is even worse than Type1.
This was common regardless of the scale factor or cluster type.
Therefore, CSV scan and sort operations should be executed
on the GPU. In the cases of Type5, Type8 and Type10, more
complex factors need to be considered because they are not
clearly classified.

As discussed in subsection IV-A, there is currently data
transfer overhead when using a GPU. Thus, if continuously
executing operations are offloaded together to one device,
the cost of data transfer between different devices can be
reduced. For example, filter and project operations are usually
executed in succession for SELECT-WHERE processing. The
filter operation has a clear CPU preference, and the project
operation is neutral. Therefore, if both operations are offloaded
to the CPU, the intermediate overhead will disappear and



Fig. 3: Speedup values with respect to execution Type1 (all
CPU) for scale factors 1 and 10 in Cluster1.

Fig. 4: Speedup values with respect to execution Type1 (all
CPU) for scale factors 1 and 10 in Cluster2.

achieve further performance improvements. Figure 5 shows
the results of these attempts. When multiple operations were
set to be performed on the CPU, the execution time was further
decreased in C67 and NI88. In Type11, filter and project
operations are offloaded to the CPU at once. Hash aggregate
operation has an obvious CPU preference, so it is also executed
on the CPU. Notice that Type5 was not a better execution type
than Type2 in Figure 4. However, in Figure 5, Type11 offsets
the data transfer overhead and further improves performance.
Similarly, since hash aggregate and broadcast join operations
are often run in conjunction, Type12 also performed better
than Type2. On the other hand, C22 and N64 are cases where
these functions were not executed consecutively. This resulted
in too much data transfer overhead, which led to a reduction
in performance. It is important to consider not only the simple
type of operation, but also the overall composition and order
of the query plan.
Query Classification. The queries we used as workloads
were classified as network-intensive, I/O-intensive and CPU-
intensive. Therefore, analysis was required based on the clas-
sification of each query. As shown in Figure 3 and 4, C22
and C67 performed more poorly than Type2 in most cases,
regardless of the scale factor. This indicates that the higher
the computational workload, the more the effect of GPU
with a large number of cores. Therefore, for CPU-intensive
workloads, the CPU-GPU heterogeneous query plan can be
inefficient in terms of execution time. On the other hand, in
the cases of N64, N94, and NI88, many outperformed Type2.
This shows that GPU use is not very efficient when there is
a large amount of network shuffling, and therefore the CPU-
GPU heterogeneous query plan can be used.
Cluster Environments. This experiment was conducted in
two clusters with different environments. When looking at the
cluster environment as a variable, the point to note is that
Figure 4 has many more cells that are darker than Figure 3.
It can also be seen in Figure 4 that the performance of
most of the queries is much better than the performance

Fig. 5: Normalized execution times of Type11 and Type12
with respect to Type2 (all GPU) for scale factor 1 in Cluster1.

of corresponding ones in Figure 3. Note that Cluster2 is
equipped with a much worse CPU than Cluster1, and the GPU
performance is a little better. Through this, it is expected that
the GPU still has a major effect on performance, even in a
CPU-GPU heterogeneous computing environment.
Summary. Some query operations such as filtering, shuffling,
and aggregation have apparent CPU preferences. It is essential
to build CPU-GPU heterogeneous query plan in light of data
size, device preferences for each operation, and other nature
of the query.

C. Overall Workload

In this subsection, we configured workloads with different
characteristics based on cluster availability, input data format,
batch data size, and SQL operation type, then compared the
performance of each workload. For the input data formats, we
used Parquet [18] as a representative for a column store, and
CSV as a representative for a row store.
Experiments on a Single Machine. Figure 6(a) shows the
experimental results for queries classified as I/O-intensive, and
Figure 6(b) depicts the results for queries classified as CPU-
intensive. The y-axis in the figures indicates the GPU speedup
compared to Type1. Higher values indicate better performance.

In terms of batch data size, the results show that GPU does
not significantly improve performance when the scale factor is
1. When the scale factor reaches 10, the performance increases
by at least three times when the GPU is enabled. Therefore,
as this paper continues to point out, CPU-GPU heterogeneous
computing could be one of the solutions for processing small-
sized data with a GPU. In terms of workload characteristics,
the overall GPU speedup was higher for I/O-intensive queries,
but its maximum value was much higher for CPU-intensive
queries. This shows that, as is known, the higher the compu-
tational workload, the greater the performance gain when using
GPUs. In terms of input data format, using Parquet files results
in a much shorter absolute execution time than using CSV
files. This is because the Parquet file is originally a column
store, so the coalesced memory access of GPU can help
process the data. However, it can be seen that the GPU speedup
is not very high in Parquet, except for C22. In the case of NI88
or C70, using the GPU was even slower than disabling it.
This is a problem with Spark SQL. Since Parquet is a column
store, Spark-Rapids calls the HostColumnarToGPU function,
which takes a significant amount of time. For this reason, the



Fig. 6: GPU Speedup versus CPU by various factors in single
machine: (a) is for I/O-intensive workload, and (b) is for CPU-
intensive workload.

Fig. 7: GPU Speedup versus CPU by various factors in
Cluster1.

broadcast operation continues to be delayed, resulting in a very
long execution time and even timeout.

Experiments on a Cluster. Figure 7 shows the results of
the experiments on Cluster1. Since there are multiple nodes,
network-intensive queries were added. The input data format
is fixed to CSV, since we concluded that Parquet might not be
adequate to use the GPU as discussed previously.

As shown in Figure 7, the GPU speedup was highest in
the order of CPU-intensive queries, I/O-intensive queries, and
network-intensive queries. For network-intensive workloads,
a large amount of data exchange results in significant data
transfer overhead. Therefore, it may be desirable to perform
CPU-GPU heterogeneous computing aware of each node’s
data locality.

Summary. Overall, CPU-GPU heterogeneous query plan can
be most efficient when performing network-intensive queries
or I/O-intensive queries dealing with small amounts of data.

V. CONCLUSION

We have identified that CPU-GPU heterogeneous computing
should be applied to improve the performance of the ETL
process, rather than using GPU blindly. We conducted three
types of experiments in Spark SQL by varying batch data
size, query types, and overall workload characteristics. The
comprehensive evaluation results showed that a certain level of
performance gain can be achieved by adequately distributing
loads between CPU and GPU. The results from each exper-
iment will necessitate the need for developing an adaptive
algorithm to maximize the performance of the ETL process.

REFERENCES

[1] W. Fang et al., “Mars: Accelerating mapreduce with graphics proces-
sors,” IEEE Transactions on Parallel and Distributed Systems, vol. 22,
no. 4, pp. 608–620, 2011.

[2] S. Hong et al., “Gpu in-memory processing using spark for iterative
computation,” in 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 31–41.

[3] Z. Chen et al., “Gpu-accelerated high-throughput online stream data
processing,” IEEE Transactions on Big Data, vol. 4, no. 2, pp. 191–
202, 2018.

[4] M. Pinnecke et al., “Toward gpu accelerated data stream processing.”
in GvD, 2015, pp. 78–83.

[5] A. Koliousis et al., “Saber: Window-based hybrid stream processing for
heterogeneous architectures,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 555–569.

[6] T. De Matteis et al., “Gasser: An auto-tunable system for general sliding-
window streaming operators on gpus,” IEEE Access, vol. 7, pp. 48 753–
48 769, 2019.

[7] F. Zhang et al., “Finestream: Fine-grained window-based stream pro-
cessing on cpu-gpu integrated architectures,” in 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, Jul.
2020, pp. 633–647.

[8] M. Armbrust et al., “Spark sql: Relational data processing in spark,”
in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1383–1394.

[9] O. Nambiar et al., “The making of tpc-ds,” in Proceedings of the 32nd
International Conference on Very Large Data Bases, ser. VLDB ’06.
VLDB Endowment, 2006, p. 1049–1058.

[10] M. Kiran et al., “Lambda architecture for cost-effective batch and speed
big data processing,” in 2015 IEEE International Conference on Big
Data (Big Data), 2015, pp. 2785–2792.

[11] L. Chen et al., “Accelerating mapreduce on a coupled cpu-gpu architec-
ture,” in SC ’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2012, pp.
1–11.

[12] C. Chen et al., “Gflink: An in-memory computing architecture on
heterogeneous cpu-gpu clusters for big data,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 6, pp. 1275–1288, 2018.

[13] P. Bakkum et al., “Accelerating sql database operations on a gpu
with cuda,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser. GPGPU-3. New York,
NY, USA: Association for Computing Machinery, 2010, p. 94–103.

[14] K. Wang et al., “Concurrent analytical query processing with gpus,”
Proc. VLDB Endow., vol. 7, no. 11, p. 1011–1022, Jul. 2014.

[15] Y. Yuan et al., “Spark-gpu: An accelerated in-memory data processing
engine on clusters,” in 2016 IEEE International Conference on Big Data
(Big Data), 2016, pp. 273–283.

[16] C. McDonald et al. (2020) Accelerating apache spark
3.0 with gpus and rapids. NVIDIA. [Online]. Avail-
able: https://developer.nvidia.com/blog/accelerating-apache-spark-3-0-
with-gpus-and-rapids

[17] J. Hemstad. (2019) Rapids cuda dataframe inter-
nals for c++ developers. NVIDIA. [Online]. Available:
https://developer.nvidia.com/gtc/2019/video/S91043

[18] D. Vohra, “Apache parquet,” in Practical Hadoop Ecosystem. Springer,
2016, pp. 325–335.


