COPRAO: A Capability Aware Query Optimizer for
Reconfigurable Near Data Processors

Lekshmi B. G., Klaus Meyer-Wegener
Data Management (CS6), Friedrich-Alexander-Universitdt
Erlangen, Germany
{lekshmi.bg.nair, klaus.meyer-wegener} @fau.de

Abstract—Placing the processing power near the data, rather
than shipping the data to the processor is inevitable and de-
manding in the era of Big Data. Thereby near-data processors
gained much attention in recent years as they can reduce the
massive data transfer between data sources and computing nodes.
However, it is important to rethink the computing architecture
to achieve the maximum advantage of near-data-processing
technology, particularly for query-processing applications. In this
paper, we propose a new approach to the query optimization in
a relational DBMS, which considers the specialized computing
capabilities of the attached FPGA-based near-data processors.
The paper focuses on the hardware-conscious optimization using
extended rules and cost models as well as on refining the
optimization strategies for changes in the hardware state of
execution. Our evaluations demonstrate that the proposed query-
optimization approach can improve the processing of queries
using near-data processors based on FPGAs.

Index Terms—Query optimization, FPGA, Near-data proces-
sor, Hardware capability.

I. INTRODUCTION

In this era of Big-Data applications, it is often challenging
yet demanding to provide quick response to user queries from
large collections of data in various sizes and types. The key
to addressing this challenge is to get the best performance
from the back-end databases of these applications by speeding
up the time of query execution in orders of magnitude. The
query optimizer, however, must perform well in order for the
database systems to achieve reasonable efficiency. But that
involves a great deal of hand-tuning for particular workloads
and data sets, with regards to the progress made over the
past decades. Furthermore, a query optimizer needs to be
tediously maintained, specifically when the system’s storage
and execution engines evolve. Therefore, optimizer heuristics
for selecting the best query-execution plan (QEP) determine
the performance of a database system, while the underlying
hardware that executes the query has varying capabilities
according to the latest technologies. In this paper, we propose
a new approach to query optimization particularly for a
reconfigurable FPGA-based near-data processor, which has its
own processing capabilities and data storage. Here, our main
attempt is to expand the optimizer with a set of optimization
rules that consider the different capabilities and states of a
near-data processor connected to it.

This work has been supported by the German Science Foundation (Deutsche
Forschungsgemeinschaft, DFG) as a part of SPP 2037 with the grant no.
ME 943/9-1.

Near-data processors allow operations to be performed
mainly for avoiding massive data transfer between data sources
and computing nodes, which impedes performance, scalability,
and energy efficiency. ReProVide (for “Reconfigurable data
ProVider”) is such a near-data processor with an FPGA-
based storage-attached hardware technology (the “ReProVide
Processing Unit” aka. RPU), employed in synergy with a
relational DBMS (RDBMS). An RPU is capable of processing
queries as it has a library of operator modules, which can
be configured onto the FPGA. However, only a subset is
ready to process the query, and to load any other module,
reconfiguration of one or more FPGA regions is required.
This means that an RPU has a state with a configured set
of modules, and changing that state costs additional time [1].

New global optimization methods are needed to integrate
such hardware into a DBMS and to decide which operations
are worth allocating to RPUs and which are not, based
on their capabilities and state. For that, it is important to
reconsider query-optimization strategies to include hardware
features and to take the processing state into account. Apache
Calcite [2] is an optimizer framework that comprises a typical
RDBMS except data storage and that allows to extend it with
own optimization rules and cost models for any number of
data sources to be attached to it. Hence we have selected
Calcite as our DBMS and have used it to develop an RPU-
specific capability-aware optimizer, which we call COPRAO
(“CO-PRocessor Aware Optimizer”). It identifies the hardware
(co-processor) state and decides which operations are worth
assigning to the hardware (query partitioning).

With the introduction of Flash technologies and recon-
figurable processing elements, Smart SSDs [12] as well as
FPGA-based storage engines [13], [14] target databases for
efficient query processing and fast delivery of results using the
concept of near-data processing [15]-[18]. However, neither of
the above mentioned works have yet discussed or proposed an
optimization strategy that decides query or operation offload-
ing based on FPGA reconfiguration time or its dynamic state.
While our approach has some similarity with the approach of
Garlic [19], our hardware adaptations are new. Furthermore, a
few more works [20], [21] considered co-processor knowledge
in optimization, but their works are more directed towards
GPU co-processors.

The paper is structured as follows: In Section II, we explain
the capabilities of the ReProVide near-data processor. The ar-

chitecture and optimization strategies of COPRAO are detailed
in Section III. Section IV illustrates and discusses evaluations
of the presented concepts. Finally, Section V concludes the

paper.
II. THE REPROVIDE NEAR-DATA PROCESSOR

An RPU includes static hardware modules such as a storage
controller, a network controller, local memory, data inter-
connects, and multiple partially reconfigurable regions (PRs)
[3]. Data is processed by a pipeline of operator modules
called accelerators loaded into these PRs. An RPU executes a
(partial) query by streaming the tables from the storage at line-
rate through one or many of these accelerators to the network
interface. It is important to note that streaming a table from
an attached storage through the FPGA comes at no additional
cost'. This implies that the cost of changing the RPU state is
determined by the time it takes to reconfigure PRs to swap
accelerators.

Currently, operator modules for filtering, projection, and
semi-join are available for the hardware, see [3], handling
integers, floats, and strings. However, some operations such
as sorting or joining larger tables can be processed at greater
speed by the DBMS itself. As hardware accelerators are best
for line-rate processing, and FPGA resources are limited,
the available operator modules cannot be combined all into
a single accelerator. E.g., implementations of arithmetical
operations (multiplication, addition, ...) depend on the data
type they operate on (float, int32, int64). Via dynamic partial
reconfiguration, it is possible to spatially multiplex more
operators on the same platform. Attribute values can be used
in arithmetical calculations, before they are compared with
constants or with each other. The comparisons supported are
the usual @ operations, i.e., <,>,=,#,<,>.

A unique approach of the ReProVide project is that in
addition to the query-execution request, the RPU interface
also allows to send some hints. These hints do not alter any
features, but give some information so that the execution
can be optimized further in the DBMS as well as in the
RPU. This is usually happens in idle state. In the situation
when not enough PRs are available for the given query, a
cost model can be used to direct the selection of operations
for the RPU, as reconfiguration of a new accelerator creates
additional overhead during query processing. Often, if the
DBMS knows about the upcoming queries (which is the case if
query sequences have been extracted from a query log), hints
about the tables and attributes that will be accessed and the
operations that will be required to execute these queries are
sent to the RPU. This allows to load the necessary accelerators
into the PRs and to fetch the required table into memory
in advance, before the query arrives. So the reconfiguration
overhead as well as the table-fetching time can be eliminated
from the total execution time, as discussed in [4]. The working
of ReProVide has been demonstrated in [5].

'We assume that the data rate of the network is smaller than the data rate
of the RPU storage.

III. THE CO-PROCESSOR-AWARE OPTIMIZER
A. Architecture and Overview

The architecture of COPRAO contains an RPU capability
catalog, a query partitioner, a plan generator, a cost calcu-
lator, a collector, and a capability monitor, in addition to
Calcite’s Volcano optimizer and execution engine, as shown
in Fig. 1. COPRAO operates in three phases, namely Regis-
tration, Query processing, and Adaptation.

In the Registration phase, the RPU capability catalog initial-
izes the capabilities of the attached hardware (the RPU), which
includes the operations supported, the maximum number of
comparators, the list of accelerators, and the number of partial
regions that are available in the RPU. These are provided by
the RPU through hints when it first connects with the DBMS.

SQL query
|

Query parser

DBMS (Apache Calcite)

Parsed

uery

Capability info.
Query partitioner
Transformed query
iR /i Plan
RPU capability H/W ! nfo. and Cost calculator i: Plan generator |
catalogue Cost info. Cost)
Plans with cost
st b
statistics rules
Selected plan %
Update cost ifo., ili i Partitioned plan
/W info Capability monitor |7 Execution engine |
Result
) RPU
Statistics. Cost info.. Colloctor Hint req uest /
H/W info., N/W info. . Probe queries

Statistics, cost info.

Figure 1: Overview of ReProVide

In the Query-processing phase, the SQL query received by
the DBMS is first parsed and validated by Calcite’s Query
parser. The parsed query is then received by COPRAO’s
Query partitioner, which partitions it into fragments that can
be executed either by the RPU or by the DBMS, based on
their resp. processing capabilities. The transformed query is
then passed to the Plan generator, which identifies all feasible
plans based on the current hardware state. It continuously
communicates with the Cost calculator to calculate the ap-
proximate costs of the plans. The Query partitioner and the
Plan generator require a set of rules to find suitable operations
in the QEP that can be worth to assign to the RPU based on the
information from the catalog. Calcite’s Volcano Optimizer then
selects the best plan based on the cost and provides it to the
Execution engine. The chosen QEP contains some operations
to be executed by the RPU and others to be executed by the
DBMS [5].

The Adaptation phase occurs after the execution (in parallel
to the data transfer), where the Collector is responsible for
collecting adequate information from the RPU. Usually, it
sends a request for hints, mainly for knowing the actual cost
of executing the pushed-down operations and for receiving
(updated) column statistics. The RPU can generate these
statistics without any additional cost [6]. The hints received as
responses to the request are provided to the Capability monitor

to fine-tune the cost models and thus allow a better choice of
QEPs in the future. In addition to this, the Collector holds a list
of Probing queries. These are not the usual SQL statements,
but lists of attributes and operations on them in a format that
can be readily sent to the RPU (without the need to optimize
them further). They are executed for specific purposes, such
as knowing the state of the hardware or the network speed, or
retrieving certain data for checking dependencies of attributes,
etc. It is the responsibility of the Capability monitor to trigger
the Collector to send the appropriate probing query and to
collect its results from the Execution engine. The Capability
monitor evaluates the hardware performance, updates the H/'W
info. and column statistics, and enables/disables rules for plan
generation according to the information received from the
Collector.

Furthermore, the order dependencies between the most
commonly used attributes and the unique key in the resp.
tables can also be determined and stored in the Capability
monitor. For that, it maintains a Data registry, which stores
the attributes, their most often accessed (range of) values as
partitions (zones) and the maximum and minimum values of
the unique key in each partition. It also enables the opti-
mizer to consider additional query plans that process Join,
Order-by, Group-by, Distinct operators more ef-
ficiently, as explained in [7]. We are at an initial stage of
exploring efficient algorithms to determine order dependencies
between attributes. What we have will be discussed below in
Subsection III-C in the context of the PredicatelnduceOnJoin
Rule.

B. Cost Estimation

COPRAO chooses the best QEP based on the time required
to execute both the RPU and the DBMS operations, like
many other cost-driven optimizers. To determine whether or
not it is worth assigning these operations to the RPU, the
execution time of specific RPU operations is compared to
the respective execution time of the DBMS. To determine
the result cardinality of each pushed-down operation with the
method explained in [8], the Cost calculator uses the RPU-
specific cost factors recorded in the RPU capability catalog
and the column statistics stored in the Cost calculator itself.
According to the initial cost model of COPRAOQO, the total
execution time of a query, totalTimeg, is the sum of the
execution time at the RPU, tgpp, the time of the data transfer
through the network, t,,¢w0rk, and the DBMS execution time,
tpBMms, for the remaining (not pushed-down) operations in the
query. Le.

totalTimeq = trpu + tnetwork + tDBMS ey

The time for executing an operation in the RPU, trpy, is
basically determined by the RPU’s table-scanning time, tscqn,
the time for reconfiguring the required hardware modules, ..,
and the accelerator time (the time for data processing), tqcc.
Le.

tRPU - max(tscany t7) + tacc (2)

Only the maximum of 4.4, and ¢, contributes to the total
execution time, as the table scan can be done while the
required accelerator is being loaded. The values of tscqn,
taces and tperwori are calculated using RPU-specific cost
factors, such as the table-scanning rate r.,,, the accelerator
processing rate 74.c, and the rate of the data transfer over the
network, 7,ctwork-
o Stable o Stable and

tscan -) acc —
rscan

,r‘llCC

f X Stable
tpetwork = ———— (3)
Tnetwork

Here stqpie is the size of the table and f is the selectivity of
the operation which is pushed down to the RPU. Furthermore,
the RPU execution time also depends on other hardware
capabilities such as the number of PRs. For example, consider
the scenario where the predicates that can be pushed down
to the RPU demand two accelerators, accy and accqy, for
processing the data. If the #PRs available is equal to the
#accelerators required (here, if 2 PRs are free), then the total
time required for the RPU to execute the operations can be
calculated as

trpPU = max(max (tscana tr,acco) + taCC()v tr,accl) Ftace 4)

The first accelerator reconfiguration can be done in parallel
to the table scan and the second reconfiguration can be done
in parallel to these two plus the first accelerator run. Hence,
the second ¢, can be hidden to a large extent. Here ¢, ¢, is
the reconfiguration time for acc;, ¢ € {0, 1}. But if the #PRs
available is less than the #accelerators required (i.e. only 1
PR is free), then the total RPU time is

tRPU = mafx(tscana tr,acco) + tacco + tr,accl + taccl (5)

So in this scenario an overhead of one additional ¢, is included
in the total RPU processing time.

COPRAO examines the hardware state (primarily using the
history of the last operations conducted in the RPU) each
time a query is optimized for the RPU. This includes the
accelerators currently loaded in the PRs, the availability of
PRs, etc. Based on this it decides which cost model would
be accurate to predict the cost of the operations to be pushed
down to the RPU now. If the RPU has been provided with
hints about the upcoming queries such as tables and attributes
that may be requested, and operations that may be invoked, the
RPU can prefetch the required tables and reconfigure or reuse
the accelerators. Especially in the case of query sequences, the
upcoming query can easily be predicted. The cost model again
changes in this scenario, as it has already been discussed in

[4].
C. Query Optimization

Query optimization in COPRAO is driven by a set of rules,
which are explicitly defined based on the RPU capabilities.
When a query is received by the DBMS, Calcite applies these

RPU-specific rules, which are integrated into the Calcite opti-
mizer through the adapter, in addition to its own optimization

guidelines [5]. The operations that can be pushed down to the
RPU (RPU-capable expressions) are mostly identified with the
help of these rules. They are mainly:

RPUOperator Rule: This rule is used in the Query
partitioner to decide which operations in the QEP can
be pushed down to RPU based on the information in
the RPU capability catalog. For example, in the sample
query?

SELECT « FROM date_dim

WHERE d_year > 1998 AND d_year < 2002
AND d_dow = 3

ORDER BY d_year,

the ORDER BY clause cannot be pushed down to RPU
as it does not support the Sort operation, and hence that
is assigned to the DBMS. So the plan will be partitioned
into two, one part for the RPU-specific operation nodes
and the other for the DBMS-specific nodes, as we have
shown in [5].

RPUFilterOnRank Rule: This rule is applied when not
enough hardware resources are available for executing
a filter predicate. For instance, if the number of com-
parators available in the RPU is 2, then the RPU cannot
execute all filter conditions of the above predicate ex-
pression, because the attributes come together in a single
beat (according to the TPC-DS table schema) in the
accelerator and demand 3 comparators. Here, for each
potential expression in the WHERE clause that can be
pushed down, a rank is determined based on the cost
of executing these expressions in the RPU ({rppy) and
their selectivity (fezp).

exrp — 1
rankey, = Jeap =1 (6)

tRPU
If the predicate selectivity is smaller, then more tu-
ples would be filtered out. Likewise, if the predicate is
cheaper, the benefits can be gained at low costs. Hence
the expression with the lowest rank is chosen to be pushed
down. Such kind of ordering was found to be efficient in
[9].

RPUSpoolFilter Rule: This rule is applied when multiple
accesses to the same table have been found especially in
a self join. Calcite encourages to create a Spool node
then, which prevents multiple operator push-downs for
the same table by allowing intermediate results to be
stored. This rule uses the facility to create a Spool node
that takes all RPU-capable filter expressions of the same
table and applies the OR clause to merge them, taking into
account common sub-expressions and subsumptions. The
RPUFilterOnRank Rule is also applied here to determine
the suitable expressions for pushing down to the RPU,
if not enough hardware modules are available for all the
expressions in the Spool node.

PredicateInduceOnJoin Rule: This rule is applied to multi-
joins, if some of the tables involved are not filtered. For

2Using the schema of the well-known TPC-DS benchmark.

example, consider the following query over the TPC-DS
schema:
SELECT » FROM date_dim, store_sales
WHERE d_date_sk = ss_sold_date_sk
AND d_year = 2000;
Here date_dim is a dimension table with the primary
key d_date_sk, and store_sales is a large fact
table with ss_sold_date_sk as a foreign key ref-
erencing date_dim. The table store_sales is not
filtered in this example. Since the RPU does not support
the Join operator, the whole table would be transferred
to the DBMS, which is not efficient. To avoid this, a new
predicate is created for filtering store_sales using
its join attribute ss_sold_date_sk. It relies on a de-
pendency between the join attribute d_date_sk of the
filtered table and its selection attribute d_year. If this
dependency exists and is stored in COPRAQO’s Data reg-
istry, then for the range of values of d_date_sk [ry..rs]
in the partition of tuples that satisfy d_year = 2000,
the rule creates a new predicate on ss_sold_date_sk,
namely ss_sold_date_sk BETWEEN r; AND 7s.
TransformJoinIntoFilter Rule: In some cases, a Join
query demands only few attributes from the large table:
SELECT SUM(ss_ext_sales_price)
FROM date_dim, store_sales
WHERE ss_sold_date_sk = d_date_sk
AND d_year = 2000;
This rule can eliminate the expensive Join operation
as well as the filtering on date_dim from the QEP
by adding a new filter predicate, as mentioned above,
according to the order dependency in the Data registry.
This was found to be an effective optimization in [10].
InduceSemijoinBeforeJoin Rule: If no attribute dependency
exists in the Data registry, COPRAO uses this rule in a
multi-join operation to induce a semi-join in the QEP,
which can be pushed down to the RPU.

D. Hardware-adaptive Plan Optimization

In its current state, COPRAO adjusts the optimization
strategies primarily in two situations. In the first scenario the
Capability monitor identifies that the calculated RPU cost,
trpu, is different from the actual RPU cost, which is received
as a hint after executing a query. If there is a change in the
RPU-specific cost factors, it updates them in the catalog using
the values provided in the hints. The difference in cost can also
be due to the lack of enough PRs, because of the hardware
workload (which may change), and this may increase the cost
by additional reconfiguration time, as in (5). The Capability
monitor requests hints to confirm the unavailability of PRs,
and if that is the case, it applies an additional rule called the
RPUFilterOnReconfiguration Rule to the optimization of the
next query. In this rule, only those expressions for which the
PRs are already loaded with the required accelerators are con-
sidered for pushing down, saving the time of reconfiguration.
As a result, the cost of pushed-down operations changes to
that of (2). The Capability monitor continuously evaluates the

DoEstimated [l 0 Actual

—e— With PR

-10% —

2.5

Actual cardinality

W

T

o

o®

[]

|

Total execution time [s]

0 e . Ld

— 20

—m— Without PR

="

—-20

I
0 2 4 6 8 Ql
Predicted cardinality, 14

I
Q2
SQL queries from Table IT

I
Execution time improvement(%)
o

| |
0.4 0.6
Selectivity

I
Q3 Q4 0 02 0.8

(a) Actual cardinality vs. Predicted cardinality (b) Estimated vs. actual total execution time as (c) Performance of InduceSemilJoinBeforeJoin

in (1)

Rule

Figure 2: Performance of COPRAO

hardware state to change the cost model without affecting any
query processing. Multiple communication ports and transfer
ports allow the RPU and the DBMS to communicate hints
simultaneously.

The second scenario occurs when the Capability monitor
notices that the network takes longer to transfer the data. In
such a situation, COPRAO disables the RPUFilterOnReconfig-
uration Rule to push down all RPU-capable operations, even if
this generates additional ¢,., in order to reduce the size of the
data transferred over the network. In addition to this, COPRAO
enables a new rule called the PredicateReplaceOnFilter
Rule. It evaluates whether an attribute used in the predicates
has an order dependency with the primary key. If so, that
selection can be replaced by the resp. condition on the primary
key. I.e. consider the example used in description of the
RPUOperator Rule. After enabling the PredicateReplaceOn-
Filter Rule, the d_year in the predicate can be replaced with
the unique attribute d_date_sk with a condition depending
on the range in which d_year > 1998 and d_year <
2002 occurs. Then the predicate in the WHERE clause changes
to d_date_sk BETWEEN 7r; AND 7o and d_dow = 3
where [r;..ro] is the range of d_date_sk values in which
d_year has the required values. Now RPU can process all
the data using these predicates and the size of the data to
be transmitted across the network is thereby further reduced.
Usually COPRAO adapts to the hardware state offline, when
no query is under processing.

IV. EVALUATIONS

COPRAO has been implemented with Apache Calcite re-
lease 1.21.0 as a DBMS on an Intel Core i9-7920x CPU
2.90GHz x 24 processor. The first version of the RPU is
connected to the DBMS using an Ethernet capable of a
maximum speed of 4 GB/s. We have evaluated our rules and
cost model for different queries with the values of cost factors
and variables as mentioned in Table I.

First we have considered a set of queries with predicates
in the WHERE clause as shown Table II, varying the constant

Table I: Range of values explored for each variable and
constants used in cost models

Variable | Values || Constant | Value
Tnetwork | 100MB/s — 4 GB/s tr 25 ms
f 0.05 - 0.9 Tscan 8 GB/s
Stable | 1GB — 10GB race | 12GBJs

values in the comparisons for different selectivities ranging
from 5-90%. The estimated result cardinality (#rows), which
is calculated using the column statistics and the methods
explained in [8], has been evaluated against the actual result
cardinality. This is shown in Fig. 2a. Here we can see a
very high correlation between the predicted cardinality and the
actual cardinality. This is because of the accurate and regularly
updated statistics of columns received from the RPU.

Table II: Predicates in the WHERE clause

Query Predicate

Q1 d_month_seq < 2000 AND d_week_seqg > 1000
Q2 d_moy = 5 OR d_dow > 2

Q3 d_year > 2000 AND (d_goy > 3 OR d_dow > 4)
Q4 d_year > 2000 OR (d_goy < 3 AND d_dow <> 4)

For the table sizes given in Table I and the filter predicates
listed in Table II, we have assessed the total execution time of
the queries. Fig. 2b illustrates the execution-time comparison
for a table size of 10GB. We can see here again that the
time can be accurately calculated by our initial cost models.
This is because the result cardinality is determined properly
from the hints, and the variables used in calculating the costs
have been adjusted appropriately. The time spent in packing
and unpacking data requests and data packets is responsible
for the differences in Fig. 2b. Fig. 2c shows the percentage
of improvement when applying the InduceSemiJoinBeforeJoin
Rule to the Join query provided in the description of the
PredicateInduceOnJoin Rule. The evaluation shows that, if the
selectivity is very small, inducing a semi-join before the join
yields around 18% execution-time improvement, if enough

PRs are available on the RPU, and around 14% improvement
with additional ¢,. overhead. These benefits become smaller as
the size of the result increases, due to the network overhead for
result transfer, the DBMS overhead for the additional Join
operation, and the ¢, overhead if not enough PRs are available.

60 —e— Scenario 1 N

—=— Scenario 2

=
E 40l i
=
P}
=]
L
=
2 20 8
£

ok N

Il Il Il Il
0.2 0.4 0.6 0.8
Selectivity

Figure 3: Performance improvement in adaptive optimization

We have modeled the Scenarios 1 and 2 to test the effi-
ciency improvement with the rules applied in the adaptive
process and for different table sizes. The results are plotted
in Fig. 3. We have considered queries that require two ac-
celerators for execution in the RPU. The efficiency of the
RPUFilterOnReconfiguration Rule is evaluated by changing
the total selectivity from 5% to 90% and using the fast 4 GB/s
network. The assessment reveals that a maximum enhancement
of 16% is reached for selectivities above 70% and for a table
size of 10 GB. For smaller result sizes, pushing down only
one operation does not bring benefits because of the DBMS
and network overhead. Hence for small selectivities pushing
down both operations is beneficial even with an additional %,
overhead.

For Scenario 2, we have considered the same state of the
hardware at a reduced network speed up to 100 MB/s and have
evaluated the push-down of all operations, involving additional
reconfiguration by disabling the RPUFilterOnReconfiguration
Rule and enabling the PredicateReplaceOnFilter Rule. This
yields no gain for selectivities above 80%, since a tremendous
amount of data must be transmitted at a slower network pace.
Yet we see advantages for a selectivity up to 80% and can
achieve around 64% in execution-time improvement for a
selectivity range below 20% and for a table size of 10 GB. This
decreases considerably as the selectivity increases and thus
more data must be transmitted over a weak network pace. So
all in all the RPU can be utilized better with the rules and cost
models of COPRAO, even for a poor network-transmission
rate and limited hardware resources.

V. CONCLUSIONS

Optimizing queries for new hardware has been an emerging
topic of discussion for a few years. In this paper, we propose
a new optimization concept, COPRAO, that can be incorpo-
rated with an RDBMS to integrate an FPGA-based near-data
processor for fast and energy-efficient processing of massive
data. COPRAO continuously interacts with the hardware to

know and update its capabilities for efficient optimization. The
advantages of this approach are extensibility and a potential of
evolution for upcoming versions of the hardware. In the future,
we will extend COPRAO to integrate a cluster of RPUs with
different capabilities and to process streaming data in addition
to stored data.

REFERENCES

[1] Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang, “Relational query
processing on OpenCL-based FPGAs,” in Proc. FPL, 2016, pp. 1-10.

[2] E. Begoli, J. Camacho-Rodriguez, J. Hyde, M. J. Mior, and D. Lemire,
“Apache Calcite: A foundational framework for optimized query pro-
cessing over heterogeneous data sources,” in Proc. SIGMOD, 2018, pp.
221-230.

[3] A. Becher, A. Herrmann, S. Wildermann, and J. Teich, “ReProVide:
Towards utilizing heterogeneous partially reconfigurable architectures
for near-memory data processing,” in Proc. NoDMC, 2019, pp. 51-70.

[4] L. Beena Gopalakrishnan Nair, A. Becher, S. Wildermann, K. Meyer-
Wegener, and J. Teich, “Speculative dynamic reconfiguration and ta-
ble prefetching using query look-ahead in the ReProVide near-data-
processing system,” Datenbank-Spektrum, vol. 21, 2021, accepted for
publication.

[5] L. Beena Gopalakrishnan Nair, A. Becher, K. Meyer-Wegener, S. Wil-
dermann, and J. Teich, “SQL query processing using an integrated
FPGA-based near-data accelerator in ReProVide (demo paper),” in Proc.
EDBT, 2020, pp. 639-642.

[6] A. Becher and J. Teich, “In situ statistics generation within partially
reconfigurable hardware accelerators for query processing,” in Proc.
DaMoN, 2019, pp. 1-3.

[7] J. Szlichta, P. Godfrey, and J. Gryz, “Fundamentals of order dependen-
cies,” arXiv preprint arXiv:1208.0084, 2012.

[8] T. Grust, “Cardinality estimation: How many rows does
a query yield?” Online, Nov. 2011, https://db.inf.uni-
tuebingen.de/staticfiles/teaching/ws1011/db2/db2-selectivity.pdf.

[9] J. M. Hellerstein and M. Stonebraker, “Predicate migration: Optimizing
queries with expensive predicates,” in Proc. SIGMOD, 1993, pp. 267—
276.

[10] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava, “Ef-
fective and complete discovery of bidirectional order dependencies via
set-based axioms,” The VLDB Journal, vol. 27, no. 4, pp. 573-591, 2018.

[11] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-data processing: Insights from a
MICRO-46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 3642, 2014.

[12] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt,
“Query processing on Smart SSDs: opportunities and challenges,” in
Proc. SIGMOD, 2013, pp. 1221-1230.

[13] L. Woods, Z. Istvan, and G. Alonso, “Ibex: An intelligent storage engine
with support for advanced SQL offloading,” Proc. VLDB, vol. 7, no. 11,
pp- 963-974, 2014.

[14] P. Francisco et al., “The Netezza data appliance architecture: A platform
for high performance data warehousing and analytics,” 2011.

[15] O. O. Babarinsa and S. Idreos, “JAFAR: Near-data processing for
databases,” in Proc. SIGMOD, 2015, pp. 2069-2070.

[16] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond the
wall: Near-data processing for databases,” in Proc. DaMoN, 2015, pp.
1-10.

[17] B. Sukhwani, M. Thoennes, H. Min, P. Dube, B. Brezzo, S. Asaad,
and D. Dillenberger, “A hardware/software approach for database query
acceleration with FPGAs,” Int. Journal of Parallel Programming, vol. 43,
no. 6, pp. 1129-1159, 2015.

[18] R. Mueller, J. Teubner, and G. Alonso, “Glacier: a query-to-hardware
compiler,” in Proc. SIGMOD, 2010, pp. 1159-1162.

[19] V. Josifovski, P. Schwarz, L. Haas, and E. Lin, “Garlic: a new flavor
of federated query processing for DB2,” in Proc. SIGMOD, 2002, pp.
524-532.

[20] S. BreB and G. Saake, “Why it is time for a HyPE: A hybrid query
processing engine for efficient GPU coprocessing in DBMS,” Proc.
VLDB, vol. 6, no. 12, pp. 1398-1403, 2013.

[21] S. Zhang, J. He, B. He, and M. Lu, “Omnidb: Towards portable and
efficient query processing on parallel CPU/GPU architectures,” Proc.
VLDB, vol. 6, no. 12, pp. 1374-1377, 2013.

