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Abstract—Massive data transfers in modern data-intensive

systems resulting from low data-locality and data-to-code system

design hurt their performance and scalability. Near-data pro-

cessing (NDP) and a shift to code-to-data designs may represent

a viable solution as packaging combinations of storage and

compute elements on the same device has become viable.

The shift towards NDP system architectures calls for revision

of established principles. Abstractions such as data formats and
layouts typically spread multiple layers in traditional DBMS,

the way they are processed is encapsulated within these layers

of abstraction. The NDP-style processing requires an explicit

definition of cross-layer data formats and accessors to ensure

in-situ executions optimally utilizing the properties of the un-

derlying NDP storage and compute elements. In this paper, we

make the case for such data format definitions and investigate

the performance benefits under NoFTL-KV and the COSMOS

hardware platform.

Index Terms—near-data processing, data format, data layout

I. INTRODUCTION

Besides substantial data ingestion, yielding an exponen-
tial increase in data volumes, modern data-intensive systems
perform complex analytical tasks. To process them, systems
trigger massive data transfers that impair performance and
scalability, and hurt resource- and energy-efficiency. These are
partly caused by the scarce system bandwidth in combination
with poor data locality, as well as traditional system archi-
tectures and algorithms requiring data to be transferred from
storage to computing elements for processing (data-to-code).

A shift towards Near-Data Processing (NDP) and code-to-
data allows executing operations in-situ, i.e. as close as pos-
sible to the physical data location, leveraging the much better
on-device I/O performance. This observation is supported by
several trends. Firstly, hardware manufacturers can fabricate
combinations of storage and compute elements economically,
and package them within the same device. Secondly, with
semiconductor storage technologies (NVM/Flash) the device-
internal bandwidth, parallelism, and access latencies are sig-
nificantly better than the external ones (device-to-host). Com-
bined, the two trends lift major limitations of prior approaches
such as ActiveDisks or Database Machines.

Knowledge about the data organisation and the ability to
interpret the data format in-situ are essential for performing
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Fig. 1: In contrast to classical queries, NDP operations must
have all necessary format and layout information to execute
the respective operations in-situ without host interaction.

NDP operations. Interestingly, NDP-able operations are de-
fined on different levels of a DBMS or the I/O stack.

1) DB-object- or Page-based like fetch, update, scan or
garbage collection;

2) Field/Column- and Record-based such as scan, record-
materialization, selection or aggregation

Each operation type processes data according to the respective
format or layout. Figure 1 shows common structures like
the Field- and Record-Format, Data Organisation, and Page
Layout, which are available in almost every classical database.
In classical (layered) DBMS architectures data formats and
operations can be viewed as abstractions defined on the
interface boundaries of the DBMS layers, which encapsulate
their functionality (Figure 1). Consequently, in SQL queries,
format definitions of the upper layers are utilized to retrieve



and process data from the layer bellow. Yet, in NDP-system
architectures this is not possible anymore, as the query or
operation is executed in-situ. Since data formats scattered
across different layers of abstraction and encapsulated within
them, and given the typical complexity of the I/O stack, NDP
processing is not possible out of the box. As a result, every
necessary format definition either needs to be available in
advance on-device or it has to be enclosed to the NDP call.

To make the case for explicit cross-layer formats, this
paper utilizes a simple K/V store-based NDP-ImageProcessor
application. It naı̈vely stores colours of images pixel-by-pixel,
and defines a small set of operations, which can be executed
as traditional queries or NDP calls.
The main contributions of this paper are:
• We claim that explicit cross-layer data formats and trans-

parent definitions of the data organisation are necessary in
NDP scenarios.

• We propose a definition for formats and layouts in the
context of Near-data Processing.

• We present an approach to format pushdown in NDP-
DBMS.

• We prototyped its strengths with a simple image pro-
cessing application, on NoFTL-KV and the COSMOS
OpenSSD as real hardware, and gain up to 33% perfor-
mance improvements.

The remainder of this paper is structured as follows: Section
II reviews the basic concepts of NDP and NDP Operations, and
provides detailed conceptional background information about
formats and layouts in databases. An illustrative implemen-
tation of format pushdown is presented and evaluated via an
ImageProcessor in Section III. We conclude with Section IV
and discuss related work in Section V.

II. CONCEPTIONAL BACKGROUND

A. Near-Data Processing

NDP targets executing data processing operations as close
as possible to the actual physical storage location, instead of
transferring the entire raw data to the host. Relevant NDP
aspects are:
1) Which operations are NDP-able: only size-reducing or leaf

operation in a QEP or also more general data-intensive
operations like joins or UDFs.

2) Result set: In absence of proper result set management
it is mandatory that the results of a NDP operations are
significantly smaller than the actual raw dataset that they
are operating on.

3) Faster processing: The NDP operations execute faster by
leveraging hardware properties such as parallelism, which
are not able to be utilized by the host.

4) Synchronization-free NDP-executions: NDP may relieve
the pressure on the system bus, reducing unnecessary
stalls, and making room for further instructions by reduc-
ing the data operations given that in-situ executions can
be performed without interaction with the host.

B. NDP Operation Types in Databases

Operations that can been executed on the device are diverse.
Interestingly, these frequently build on top of each other,
forming a NDP-operation hierarchy (Figure 2).
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Fig. 2: Different NDP operation types build upon each other
during the execution.

The lowest level constitutes the on-device Data Organi-
sation methods. These process in-situ the physical storage
segments allotted to a certain database object, performing
full scans or on-device lookups. Such operations yield NDP
accessors (hardware or software) that result from the way data
is accessed in the respective data organization (i.e. heap) or
the storage structure (i.e. LSM-tree).

Operations tied to the Data Organisation-based usually trig-
ger physical on-device I/O operations, which are Page/Block-
based. These perform physical I/O on-device without inter-
preting the contained data. Furthermore, they operate on units
of physical granularity such as Pages/Blocks for Flash or
cachelines for NVM. Depending on the storage stack, these
can be triggered either by the Flash-Translation Layer on
the device, any intermediate layers in the operating system,
such as file systems or the kernel, or, in case of Native
Storage Management, by the database itself [1]. In the context
of databases, these Page/Block-based operations are usually
connected to the Page Layout Accessors or Page Format
Parsers to extract the physically embedded database records.

Record-based operations comprise among others full table
scans, index lookups, or tree balancing. They make use of
Page- and DB-Object-based operations and also interpret parts
of the data according to Structural Elements as defined in
Section II-C. For instance, an index lookup might read several
pages containing internal nodes to identify the correct leaf
page. Depending on the database, this page is parsed likewise
to retrieve either the position in the table or the actually
requested data. All these operations process data according
to the given page layouts and respective record formats. On
top higher-level database operators like selections, joins, or
GROUP BYs can be implemented efficiently on device.

If an operation needs to interpret individual fields within one
or multiple records another Field-based operation has to be
executed. Closely linked to the DB-Object and Record Format,
these kind of operations have to utilize the data definition
(from the database catalogue) to extract the data types of
necessary fields. While this is sufficient for a projection, other
types of Field-based operations, such as aggregate-functions,
must interpret these values to perform the NDP-operation.



In NDP scenarios it is unacceptable to have expensive round
trips to the host to get any format or layout definitions (e.g.
Data Organisation) at runtime, as most interpretable DBMS
kernels do, while executing queries or stored procedures.
Rather such definitions need to be extracted and ,together
with page and record layouts, be passed to the NDP-device to
ensure synchronization free NDP-execution. Hence, the need
for explicit cross-layer format definitions arises (Section II-C).

C. Structural Elements: Formats and Layouts

The terms format and layout are often used interchangeably
to describe the structure of the data in a specific area in
memory or storage. However, in the context of this paper
and NDP we distinguish between the two and provide their
definitions below (Figure 3).

Structural Element LayoutFormat

1 1 1 1

N 1

Fig. 3: Formats describe the properties of a single structural
element, while layouts define the arrangement of multiple
subordinate elements.

1) Data Formats: The Format of an element defines the set
of features (attributes, datatypes or sub-elements) as properties
of that element. The format defines how an element is to be in-
terpreted. Such properties can be user-, application or system-
defined. Typical examples in databases are column/field-types,
table definitions, and tuple formats. In NDP-environments
dedicated software or hardware Format Parsers are required
for such formats, as they need to be processed in-situ to
execute NDP-operations (such as SUM or AVG, or to sort
and compare, to name a few).

2) Data Layouts: In contrast to Formats, Layouts de-
scribe the spacial/physical arrangement of elements within the
memory space and the scope of a container-element. Clearly
the contained elements can be of different formats. Typical
examples are page- or record-layouts, or storage structures.
The typical row-store record layout would comprise a record-
header with a set of fields and flags, followed by a record-
body, roughly containing the tuple-attributes as elements of
the record format. Alternatively, the typical record layout in a
KV-Store would comprise an identifier/key and a value.

In NDP settings various Layout Accessors (hardware or soft-
ware) are needed on-device to retrieve the required elements
efficiently from memory or storage. In contrast to Format
Parsers, Layout Accessors have to be available entirely on the
NDP device to retrieve the expected data storage locations.
Depending on the NDP operation, a Format Parser might be
applied on the result of a Layout Accessor.

Consider Figure 4 – a Format Parser will be required to
process records or fields of an image table, while a Layout
Accessor will be used to retrieve Record2.

D. Structural Elements in Databases

Formats and Layouts usually differ among DBMS types
and are often optimized for their specific characteristics. In
the following, we describe common concepts of wide-spread
Physical Storage Organisations and list examples for Format
Parsers and Layout Accessors. As a running example Figure
4 shows how these are mapped onto a Key/Value store (i.e.
in MyRocks with RocksDB under the hood, which we use in
the NDP-ImageProcessor scenario).

1) Field Format: Based on the DDL DB-object definitions
in relational databases the list of column data types, their
Field Formats and their physical representations are known
in advance or are engine-specific and therefore predefined.
For instance, MyRocks defines an entire hierarchy of various
number, decimal, string and date representations. Their Format
describes the size in Bits or Bytes and a logic to translate the
physical representation into an interpretable format for a given
instruction set of the processing unit. For instance, the Format
of the SQL clause INTEGER is trivially mapped to a 32 bit
little-endian signed integer. Yet, if this field is part of the record
identifier its physical representation is changed to big-endian
to ensure a natural sort-order (see Figure 4).

2) Record Layout and Format: In the typical DBMS, a
physical record has a unique identifier. For instance, in the case
of MyRocks, which utilizes RocksDB as a storage manager
under the hood, this identifier includes a column family id
and all primary key fields. In addition, RocksDB appends
further information such as the sequence number and the
key/value type. To reduce the physical space consumption,
fields included in the identifier are not stored redundantly
in the value. The following example depicts a simple table
definition for the simple ImageProcessor, which stores every
pixel of an image as a single record. Figure 4 (and Figure
5) shows the Record Layout and Format and the necessary
information for a Record-based NDP operation.

3) Page Layouts: Page layouts are a distinguishing char-
acteristic of different DBMSs and have a major performance
impact. They account for different access properties in terms
of access and data locality, cache-awareness, prefetching as
well as operation and maintenance costs. Three widely spread
representatives are the N-ary Storage Model (NSM) [2], the
Decomposition Storage Model (DSM) [3], and, the hybrid
between those, the Partition Attributes Across (PAX) [4].

The difference is the arrangement of records within the
space of a classical page as shown in Figure 5. However, there
are various further layouts, such as Data Blocks [5] of HyPer,
which optimize for different performance properties like scans
and point queries on compressed data. IPA [6] and IPA-IDX
[7] optimize for byte-level writes and write-amplification.

4) Data Storage Organisation: Databases utilize various
data structures to store records of different database objects.
Hence, the most trivial storage organisation is a heap file –
flat set of records placed on pages without any specific order.
Alternatively, typical persistent Key/Value stores use multi-
level LSM-trees.



CREATE TABLE ‘images‘ (

‘imageid‘ INT(10) UNSIGNED NOT NULL,

‘x‘ BIGINT(20) UNSIGNED NOT NULL,

‘y‘ BIGINT(20) UNSIGNED NOT NULL,

‘red‘ INT(10) UNSIGNED NOT NULL,

‘green‘ INT(10) UNSIGNED NOT NULL,

‘blue‘ INT(10) UNSIGNED NOT NULL,

PRIMARY KEY(‘imageid‘,‘x‘,‘y‘)

);
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of the simple NDP-ImageProcessor divide fields in identifier
and value for a simple table definition executed in MyRocks.
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For NDP calls, operating on the granularity of DB-Objects
or even finer granularities (see Section II-B), the organization
of the underlying data structure is of importance, as the NDP-
device needs to be able to: (a) navigate and iterate over the
physical storage; and (b) should be able to perform address
resolution in-situ. Consequently, depending on the operation,
the Layout Accessors have to retrieve the requested data from
storage.

III. PUSHING DOWN OPERATIONS WITH FORMAT

A. The ImageProcessor
After motivating the necessity of format pushdown from

the conceptional perspective, we introduce a simple NDP-
ImageProcessor. It uses NoFTL-KV [1], which is based on the
pluggable storage engine MyRocks, to manage its images. For
the sake of simplicity, each pixel of an image is disassembled
into its basic colours Red, Green and Blue, resulting in a
record format similar to Figure 4. The operations triggered
by the application comprise a simple Get to retrieve colour
information about a single pixel, and a histogram calculation,
which counts the frequency of each colour within a certain
area of an image.
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DB-Object: Image LSM-Tree

ImageProcessor

NVM / NAND
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Fig. 6: The simple NDP-ImageProcessor application runs on
top of NoFTL-KV, which is based on the pluggable storage
engine of MyRocks, and operates either with conventional
query requests via Block I/O to the Cosmos OpenSSD, or
utilises the Native Storage Manager to issue NDP calls on the
device. Depending on the stack, the Format Parser and Layout
Accessors are executed within the KV-Store on the Host, or
on processing elements of the NDP device.

Figure 6 gives a detailed view on the overall architecture.
On the left-hand side, operations are executed over the con-
ventional stack, while the right-hand side depicts the NDP
execution model. To simplify the diagram, several layers, such
as Kernel and FTL are omitted for the conventional stack.
However, clearly visible is that executions for format parsing
and layout accessors happen on-device close to the physical



storage instead of on the host, where NoFTL-KV is running.
This requires both a modern Native Storage Manager as well
as a pushdown mechanism ensuring that information required
to configure and run the code for the respective Structural
Elements is available on-device. For instance, current state
information about the LSM-Tree and the record and field
format as well as the SST layout must be provided to the
NDP processing elements.

Since the entire processing flow is executed on the device,
it can be optimized for the specific storage properties, e.g.
number of concurrently addressable flash chips, or leveraging
the pipelining effects of Cosmos’s Flash Controller. The return
path is lean, since results are directly communicated to the
application without any intermediate layers.

B. Testbed
For the evaluation the system stack shown in Figure 6 is set

up on a host system, equipped with an Intel E6850 (3GHz)
CPU, 4GB memory, and a 500GB SSD. The operating system
is Debian 9.5 with kernel version 4.9.0. The host is connected
to the Cosmos OpenSSD (see Figure 7) via a four lane PCIe
3.0 bus. The COSMOS platform [8] comprises a Zynq 7000
SoC, 1GB RAM and a 512GB NAND Flash module. The
Flash and PCIe controllers are located on the FPGA part of
the Zynq 7000 and are controlled by one of its ARM Cores
(667 MHz). In case of the conventional stack, the Cosmos
Flash storage is mounted as classical block device with an
Ext4 file system. When running NDP experiments, the second
ARM Core, which is running at a clock frequency that is more
than four times slower than the host CPU, is responsible to
run the NDP Format Parsers and Layout Accessors.

Fig. 7: The Cosmos OpenSSD board resembles a classical
enterprise SSD connected via PCIe Gen3 x4 to the host. It
comprises a Zynq 7000 SoC with an FPGA and a dual-core
ARM, 1GB RAM and a 512GB NAND Flash module.

C. Evaluation
For the evaluation of both described operations, GetPix-

elColour and GetHistogram, are executed on the conven-
tional stack as a baseline, and as NDP calls to compare the
performance benefits. These are application-specific versions
of typical database operations like lookup and scan. The
pre-loaded dataset comprises 100 000 000 KV-Pairs of pixels.
Experiments are executed three times and the average result
is reported. To ensure comparability, the page cache of the
operating system is cleared every 2 seconds.

1) Record-based Operation – GetPixelColour: Within the
given architecture, this operation demonstrates a simple GET
on the LSM-Tree. The record is not interpreted, and no
further calculations or extractions are necessary to retrieve
the required result. The NDP-operation, Layout Accessors
and Format Parsers are executed on the slow ARM core
without FPGA support. Ahead of the experiment, 1000 pixel
coordinates are pre-generated randomly to ensure an equal
access pattern in all executions. We run the experiment once
without any defined caches in NoFTL-KV or Cosmos (Figure
8.a), and once with caches for the index enabled (Figure 8.b).
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Fig. 8: NDP calls exhibit robust performance, in general. In
absence of any on-device/NDP caches, the traditional stack
executes slightly faster, due to non-deactivatable caches in the
operating system. However, if small on-device index caches
are enabled, NDP’s performance improves around 33% against
the baseline.

While the conventional stack via the block device interface
yields significant response time fluctuations, NDP executions
exhibit robust performance and stable response times. In
absence of any on-device caching, the NDP stack has a
slightly inferior performance. Detailed analysis of I/O traces
on Cosmos show that not every read request is served by the
device due to non-deactivatable caches within the kernel or file
system distort the results somewhat. However, with a small
on-device index cache, the NDP performance is around 33%
better than the conventional stack. Only when an index block
has to be fetched, the performance drop behind the average
execution time of the baseline.

2) Field-based Operation – GetHistogram: This operation
utilizes an Iterator Accessor to scan through pixels of a given
area. By applying a Field Format Parser the colours can be
read and the respective bins of the histogram incremented.
The NDP-operation, Layout accessors and Format parsers are
executed on the slow ARM core without FPGA support. The
experiment is run with different selectivities on the entire data
set.

Both curves show a linear execution time, increasing with
data size, due to same low-level NAND Flash I/O behaviour.
However, by leveraging pipelining effects of the Flash Con-
troller, and exploiting the entire parallelism of the Flash chips,
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Fig. 9: The performance of both stacks increases linearly for
the given data set size across a range of selectivities. However,
due to optimizations exploiting Cosmos’s hardware properties
improve the performance of NDP by about 27%.

the performance can continuously be improved by approxi-
mately 27%.

IV. CONCLUSION

In the present paper, the necessity for format pushdown
in NDP scenarios is clearly motivated. We put the terms
format and layout in an NDP context and discuss a type
hierarchy for NDP operations. Processing data format and
layout definitions on device and creating/generating dedicated
parsers and accessors allows optimizing for the given hardware
properties and improving the execution time. The evaluation
demonstrates the impact of NDP by improving a Record-
based operation by around 33% and a Field-based operation by
approximately 27%. Additionally, it is worth mentioning that
the NDP operations are executed on an ARM Core, which is
clocked at only 1/4 of the host CPU.

V. RELATED WORK

Using Formats and Layouts to describe storage elements
are concepts from the early beginning in the research and
development of databases. Page layouts such as NSM [2] and
DSM [3] date back to at least the 80s. Yet, also recently, new
variations were proposed like PAX [4], BLU [9] of DB2, or
DataBlocks of HyPer [5]. Some layouts even make use of the
hardware properties of Flash like Delta Records in [6].

Likewise, the concept of Near-Data Processing is deeply
rooted in database machines [10] developed in the 1970s-80s
or Active Disk/IDISK [11]–[13] from the late 1990s.

With the advent of Flash technologies and reconfigurable
processing elements Smart SSDs [14]–[16] were proposed.
An FPGA-based intelligent storage engine for databases is
introduced with IBEX [17]. Biscuit [18] is a proposal for
a general NDP framework. JAFAR [19], [20] is one of the
first systems to target NDP for DBMS (column-store) use,
whereas [21], [22] target joins besides scans. The use of NDP
in the realm of KV-Stores has been investigated in [23], [24].
Kanzi [25], Caribou [26] and BlueDBM [27] are RDMA-based
distributed KV-Stores investigating node-local operations.

Much of the prior work on NDP focusses mainly on
either bandwidth optimizations or on the execution of specific
algorithms. Yet, this paper gives a broad overview of necessary
formats and layouts, in particular for databases to issue several
types of operations as NDP calls.
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