
Revisiting Hash Join on Graphics Processors: A
Decade Later

Johns Paul1, Bingsheng He2, Shengliang Lu2, and Chiew Tong Lau1

1Nanyang Technological University
2National University of Singapore

Abstract—The large number of computational cores and the
high memory bandwidth provided by modern graphics processors
(GPUs) make them an ideal hardware accelerator for in-memory
hash joins. Over the last decade, significant research effort has
been put into improving the performance of hash join operation
on GPUs. Over the same period, there have been significant
changes to the GPU architecture. Hence, a systematic revisit
from the perspective of GPU hardware changes is necessary to
understand the past research and to guide future studies.

In this paper, we first revisit the major GPU hash join imple-
mentations in the last decade and detail how they take advantage
of different GPU architecture features. We then perform a
comprehensive performance evaluation of these implementations
using the latest hardware. This helps to shed light on the impact
of different architecture features and to identify the factors
guiding the choice of these features. Finally, we study how data
characteristics like skew and match rate impact the performance
of GPU hash join implementations and propose techniques to
improve the performance of existing implementations under such
conditions.

Index Terms—GPU, hash join, partitioning

I. INTRODUCTION

The high level of parallelism and the high memory band-
width provided by GPUs make them an attractive hardware
accelerator for Online Analytical Processing (OLAP). Over
the last decade, tremendous amount of research effort has
been put into accelerating relational operators like hash join
using GPUs [1]–[9]. During this time, in addition to the incre-
mental improvements in the level of parallelism and memory
bandwidth, GPU hardware has made major improvements
through the introduction of a number of new architecture
features. These improvements have made GPUs one of the
most promising pieces of hardware for accelerating hash join
operation, which is one of the most expensive operators in
modern query processing systems.

Hence, we need to revisit GPU hash join implementations
in conjunction with the GPU architecture improvements as
shown in the timeline in Figure 1. The timeline clearly shows
the following trend: every 1-2 years vendors like NVIDIA
introduce new architecture features and 2-3 years down the line
we see new GPU hash join implementations that outperforms
previous implementations by taking advantage of these new
features. However, existing literature lacks a systematic revisit
of GPU hash join implementations from this perspective.
Further, given the trend in Figure 1, understanding the factors
guiding the choice of different features is critical to future

research and system designs. Hence, in this paper we revisit
the hash join implementations in the last decade to understand
the impact of different GPU architecture features and to
identify the factors guiding the choice of different architecture
features.

GPUs are designed to process huge amounts of data in par-
allel with minimal inter-thread communication. Hence, GPUs
are often inefficient when processing unbalanced workloads
like skewed input relations. Other GPU hardware limitations
like limited global memory size make it difficult to join
data sets with high match rate due to possible overflow of
output buffers. Still, there is a lack of studies on the impact
of such workloads on the overall performance of hash join
implementations. To address this, we study the impact of data
characteristics like skew and match rate on the performance of
hash join implementations and propose techniques to improve
their performance for such data sets.

To summarize, the major contributions of this paper are as
follows. First, we revisit the major hash join implementations
in the last decade and detail how these implementations take
advantage of new GPU architecture features. Second, we study
the impact of these architecture features on the performance
of the hash join operation and identify the factors guiding
the choice of different features. Third, we study how data
characteristics like skew and high match rate impact the per-
formance of GPU hash join operation and propose techniques
to improve the performance of existing implementations when
joining such data sets.

II. BACKGROUND

In this section, we present the background on GPU hardware
and detail some key new GPU architecture features. Note that,
we mainly focus on NVIDIA GPUs, and leave AMD GPUs
as future work.

A. GPU Architecture & CUDA

A single GPU consists of multiple streaming multiproces-
sors (SMs), each of which consists of multiple CUDA cores.
Each CUDA core has access to its own set of registers (local
memory). Further, each SM contains an L1/texture cache and
a shared memory. All the SMs in the GPU share an L2 cache
and a global memory. Finally, all data needs to be copied from
the CPU main memory to the GPU global memory (via the
PCIe bus) before it can be processed by the GPU.

2008

PHJ for GPUs

GMem Atomics

2010

1) Multiple Streams
2) UVA
3) Lock-update-

release based
atomics for SMem

2014

1) Unified Memory
2) Native SMem

atomics
3) Dynamic

Parallelism

PHJ using Shuffle
Instruction

2015

1) Non-PHJ using
GMem Atomics

2) PHJ using UVA
and lock-update-
release based
atomics

2012

Shuffle Instruction

PHJ using shuffle
Instruction, native
SMem atomics and
dynamic parallelism

20172016

Hardware support for
page faults

Bucket chaining
based PHJ using

unified memory and
hardware page faults

2019

PHJ : Partitioned Hash Join
SMem : Shared Memory
GMem : Global Memory

Hash Join
Evolution

Architecture
Features

Fig. 1: Timeline of GPU hash join implementations and GPU architecture features.

In the CUDA programming model, a program executed by
the GPU is known as a kernel. A kernel is executed as a
grid of thread blocks which can further be broken down into
individual threads. Each thread block is assigned to a single
SM and the CUDA cores inside each SM executes the threads
in a SIMD fashion in groups of 32 threads (known as warp).
Also, the threads within the same thread block can share the
data stored in the GPU shared memory.

B. Emerging GPU Architecture Features

Over the last decade, NVIDIA has introduced the following
major architecture features relevant to GPU hash join imple-
mentations.

Inter-Thread Communication. NVIDIA has introduced
native shared memory atomic operations and shuffle operation
for more efficient inter-thread communication. The atomic
operations allow the threads within a thread block to modify
shared data structures without conflicts; while the shuffle
operation which has significantly lower overhead than atomic
instructions allow the threads within the same warp to access
each other’s local memory (registers). Shuffle and shared
memory atomic operations make it possible for threads to
collaboratively build the histogram or the hash table.

GPU Resource Utilization. To improve the resource utiliza-
tion, NVIDIA introduced support for multiple CUDA Streams
and Dynamic Parallelism. Support for multiple CUDA streams
make it possible to simultaneously assign operations to both
execution and DMA engines on GPUs. Dynamic parallelism
allow kernels to launch their own child kernels, thus making it
possible to dynamically alter the number of threads allocated
to each partition when joining skewed input relations.

Efficient Data Movement. The unified memory feature
allow the GPU driver to move the data between CPU and GPU
without explicit memory copy instructions. Further, hardware
support for page faults allow more efficient and fine grained
movement of data across the PCIe bus when taking advantage
of unified memory. The page fault system manages a global
page table that is updated every time a data entry is moved
from CPU to GPU or vice versa. Further, since the page table
needs to be locked for each update, the GPU driver groups
together requests from multiple threads into a single page table
update.

III. GPU HASH JOIN OVER THE DECADE

Hash join implementations for CPUs have been studied
exhaustively in literature [10]–[12]. In fact, in 2016 Schuh et.
al. [13] performed a detailed study of thirteen different join
implementations for CPUs. However, this study is specific to
CPUs and does not look into GPU hardware and associated
implementations. The hash join implementation proposed by
He et. al. [1] in 2008 does not take advantage of modern GPU
architecture features like atomic operations, unified memory
or multiple CUDA streams. In the same year, NVIDIA GPUs
started widely supporting atomic operations in global memory.
Following this in 2012, Dan et. al. [14] presented a simple non-
partitioned hash join implementation which built hash tables
using global memory atomic operations. In the same year, Pirk
et. al. [15] tried to accelerate foreign-key joins by executing
random table lookups on the GPU VRAM.

In 2012, Gregg et. al. [16] demonstrated the impact of PCIe
data transfer overhead on the overall performance of GPU
applications. At this point, vendors like NVIDIA have been
trying to address concerns regarding movement of data and
had started supporting features like universal virtual addressing
(2010) which allowed GPU kernels to access data directly from
the CPU main memory. In 2012, Kaldewey et. al. [6] designed
a system that takes advantage of UVA and lock-update-release
based atomic instructions (supported since 2010) to share
the histogram among multiple threads. Multiple studies on
databases in 2013 [2], [8], [17], [18] used non-partitioned
hash join implementations. But these implementations failed
to outperform the hardware conscious partitioned hash join
implementations.

In 2015, Rui et. al. [3] revisited the original hash join
implementation and proposed improvements like the use of
shuffle instructions (released in 2012) to speedup the prefix
sum operation. In 2017, Rui et. al. [4] proposed a hash join
implementation that overlaps the data transfer of the second
input relation with the partitioning of the first input relation
(using CUDA Streams), effectively hiding the cost of this
data transfer. The implementation also proposed the use of the
Dynamic Parallelism feature released in 2014 to join skewed
input relations. Finally in 2019, Sioulas et. al. [9] proposed an
implementation that partitions the data using bucket chains,
thus avoiding the need to build histograms. This helped the
implementation to more efficiently pipeline computation and

data transfer compared to previous studies. The same study
also presented an implementation that makes use of unified
memory (2014) and support for hardware page faults (2016)
to move data between CPU and GPU.

IV. IMPLEMENTATION DETAILS

In this section, we first introduce the representative hash
join implementations used in this study. We then present the
techniques to efficiently handle input relations with high skew
or high match rate.

A. Representative Implementations

To conduct a comprehensive study of hash join operation on
GPUs, we choose seven different implementations (Table I).
In the remainder of this section, we detail the internal working
of these implementations with an emphasis on their use of new
GPU architecture features.

1) NOP: This is the traditional non-partitioned hash join
implementation that adopts a hardware oblivious two-stage
design consisting of a build stage and a probe phase. The
build phase generates a hash table using global memory atomic
operations and the probe phase then probes the hash table
using the second input relation. However, this implementation
fails to take advantage of GPUs L2 cache and shared memory
when the size of the hash table is larger than the L2 cache or
shared memory and is hence inefficient for large data sizes.

Join Paper Description
NOP [14] Non partitioned hash join.

PTH [1] Basic parallel radix hash join that partitions the data
by building a per-thread histogram.

WSH This Same as PTH except the histogram is shared within
the same warp using the shuffle instruction.

BSH [4] Same as PTH except the histogram is shared within
the same thread block using atomic instructions.

PRBC [9] Parallel radix hash join that partitions the data using
chains of buckets instead of building a histogram.

UMJ [9] Same as PRBC except using the unified memory fea-
ture to move the data between the CPU and GPU.

UMJ-PF This Same as UMJ except using prefetching while
accessing input data over PCIe.

TABLE I: Representative hash join implementations.

2) PTH, WSH & BSH: To address the inefficiencies of
NOP, implementations like PTH, WSH and BSH recursively
partitions both input relations by building histograms in the
GPU shared memory. This helps generate small co-partition
pairs that fit within the shared memory for the final join
operation. In PTH, each individual thread maintains its own
histogram data; while WSH and BSH are capable of sharing
the histogram among multiple threads (up to 32 and 1024
threads respectively) using shuffle and atomic instructions. To
understand the benefit of this sharing, we need to look at how
it affects other aspects of the hash join operation, like the
occupancy rate (hardware utilization).

Since the shared memory requirements of the threads exe-
cuting on an SM cannot exceed the shared memory available
in hardware, the maximum number of partitions that can be
generated in a single pass (Pmax) by PTH, WSH and BSH
is given by Equation 1. Here Smax is the maximum amount

Building
Histogram (S)Partitioning (S)

Data Transfer (R)
Partitioning (R)

Data Transfer (S)Stream 1

Stream 2

Stream 1

Stream 2
Building Histogram (R) Building Histogram (S)

Fig. 2: Execution timeline of BSH.

Stream 2

Data Transfer (R) Data Transfer (S)

Partitioning (R) Partitioning (S)

Stream 1

Stream 2

Fig. 3: Execution timeline of PRBC.

of shared memory available to the threads allocated to the
same SM in bytes, #Tact is the number of threads executing
simultaneously per SM , #TH is the number of threads sharing
the same histogram, Ĥsz is the unit size of a histogram entry
in bytes. The value of #TH is 1, 32 and 1024 for PTH, WSH
and BSH implementations respectively. Further, Equation 1
clearly shows that, #TH is inversely related to Pmax and the
level of parallelism (#Tact) i.e implementations with lower
levels of shared histogram access will have lower occupancy
rates for the same number of partitions. This means that PTH,
WSH and BSH chooses different levels of trade off between
the cost of histogram updates and occupancy rates.

Pmax =
Smax ∗#TH

Ĥsz ∗#Tact

(1)

Once both relations are partitioned, the co-partitions are
joined using nested loop join. Further, to take advantage
of separate DMA and execution engines, WSH and BSH
simultaneously executes PCIe data transfer and kernels (using
separate CUDA streams). Specifically, both these implemen-
tations overlap the partitioning of the first input relation with
data transfer of the second input relation as shown in Figure
2.

3) PRBC: The partitioning stage in PRBC does not require
the generation of a histogram. It instead makes use of bucket
chaining, where empty buckets are allocated to partitions
as need. Hence, PRBC is able to more efficiently overlap
computation and data transfer as shown in the timeline in
Figure 3. This is because, the partition kernel in PRBC offers
sufficient computation to overlap the partitioning of each
relation with the input data transfer of the same relation, which
is not the case for the histogram build operation in BSH or
WSH. Finally, PRBC joins each pair of co-partitions using
nested loop join or NOP.

4) UMJ & UMJ-PF: All previous implementations make
use of explicit memory copy instructions to move the in-
put/output data between CPU and GPU. UMJ and UMJ-PF
on the other hand delegates this responsibility to the GPU
driver using the unified memory feature. In UMJ, when a
thread tries to access data which has not been moved to the
GPU, the driver migrates the necessary page to the GPU using
the page fault mechanism. Finally, in addition to using the
unified memory feature, UMJ-PF enables prefetching of data
(using cudaMemPrefetchAsync instruction) so that the data is
available on the GPU before it is actually required by the

kernel threads, thus avoiding the need for page table updates
during kernel execution (updates happen during prefetching).

B. Handling Data Skew & Match Rate

In this section, we propose simple techniques to more
efficiently join input relations with high skew and high match
rate. Note that, techniques proposed in this section can be used
to improve the performance all of implementations in Table
I. However for the sake of simplicity, we only evaluate these
techniques using the BSH implementation (Section V).

1) Data skew: Skewed input relations can lead to severe
workload imbalance as data will be unevenly distributed across
partitions. Existing implementations either dynamically launch
more threads when skewed partitions are detected (BSH)
or breakdown partitions into small buckets and distribute
the buckets among thread blocks in a round robin fashion
(PRBC). However, launching additional kernels at runtime
has significant overhead and breaking down partitions among
multiple thread blocks is inefficient for uniform data sets [9].

Hence, we adopt a lightweight approach that dynamically
re-distributes the thread blocks among the partitions based on
their size. For this, we analyze the histogram or bucket headers
and then generate a mapping between the thread blocks and
the partitions. Since generating the mapping does not require
any complex operations, the time taken for this process is often
less than 0.5% of the total execution time.

2) Match Rate: Relations with high match rate can cause
output buffer overflows when joining co-partitions. Existing
solution is to use an additional pass to accurately predict the
number of output tuples that will be generated by each pair
of co-partitions. This information is then used to group the
partitions such that the output generated by each group can
fit within the output buffer. However, this additional pass adds
unnecessary overhead to the join operation [4]. Further, simply
grouping together partitions by estimating worst case output
size (from partition size) can lead to the generation of very
small groups which cannot efficiently use all GPU cores.

Hence, we adopt an approach that generates partition groups
by estimating the number of output tuples than will be gener-
ated by each pair of co-partitions. The estimation is based on
the size of the co-partitions, the overall input size and the error
in previous estimations. This helps achieve higher occupancy
rates without encountering output buffer overflows. Finally,
we minimize the overhead of recovering from an incorrect
estimation by allowing the thread blocks to keep track of
available empty slots in the output buffer and the rate at which
the buffer is getting filled. This information is then used to
detect future overflows and terminate execution.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Hardware. We use the P100 GPU from NVIDIA for our
experiments. The GPU is connected to the CPU via x16
PCIe 3.0 interface. We use CUDA 9.0 and gcc 4.8.5 with
full compiler optimization (-O3) to compile the code and use
NVProfile tool to collect performance metrics.

0
100

200
300

400
500

600
700

800

900
1000

2 4 8 16 32 64 128 256

Th
ro

ug
hp

ut
 (M

ill
io

n
Tu

pl
es

 /
s)

Input Size (Million Tuples)

NOP PTH WSH
BSH PRBC UMJ
UMJ-PF

Fig. 4: Performance comparison of all GPU hash join imple-
mentation using P100 GPU.

Input Data. For our experiments, we use synthetic data
sets following previous studies [3]–[5], [9], [13]. The data set
consists of two relations R and S with a tuple size of 8 bytes
(4 byte key and 4 byte id). The key values are generated as
sequential integers and then randomly shuffled. We further set
|R| = |S| for all experiments and vary the total input size (|R|
+ |S|) from 2M to 256M tuples.

Experimental Outline. In Section V-B, we present the
overall performance comparison of the seven representative
GPU hash join implementations. Then, in Section V-C we
evaluate the impact of using different GPU architecture fea-
tures. Finally, we evaluate the efficiency of the techniques
proposed to handle data sets with high skew and high match
rate in Section V-D. Note that, following previous studies [6],
[9], [13], we define throughput as the number of input tuples
processed per unit time.

B. Overall Comparison

To get a comprehensive understanding of the performance
of all seven hash join implementations (Table I), we present
their throughput for data sizes from 2M to 256M in Figure 4.
We now make the following observations from the results in
Figure 4.

First, among the histogram based implementations (BSH,
WSH and PTH), WSH achieves the best performance for small
data sizes; while BSH outperforms both PTH and WSH by up
to 3.9x for large data sizes (Section V-C1). Second, the PRBC
implementation that adopts a bucket chaining scheme, outper-
forms the best histogram based implementation (BSH) by up to
1.36x and achieves over 5.3x performance improvement over
the 2008 implementation (Section V-C2). Third, the use of
unified memory for data movement (UMJ) leads to significant
performance degradation. However, using a combination of
unified memory and prefetching (UMJ-PF) helps to achieve
performance similar to the PRBC implementation that makes
use of explicit memory copy instructions (Section V-C3). We
dive deeper into the reasons behind the above observations in
the next section.

C. Impact of GPU Architecture Features

In this section, we detail the reasons behind the observation
made in Section V-B from the perspective of GPU archi-
tecture changes. Specifically, we look at GPU architecture

features associated with improving inter-thread communica-
tion (Atomic and Shuffle Instructions), hardware utilization
(CUDA Streams) and efficiency of data movement (Unified
Memory and Hardware Page Fault).

1) Atomic and Shuffle Instructions: To understand how the
choice of Atomic (BSH), Shuffle (WSH) or simple arithmetic
instructions (PTH) for histogram updates lead to significant
performance difference, we need to look back at Equation 1.
For the P100 GPU Smax is 64K and the value of Ĥsz is 4
(integer data) for all three implementations. Based on this, to
generate 1024 partitions in a single pass, PTH needs to set
the number of active threads per SM (#Tact) to 16; while
WSH and BSH can achieve #Tact values of 512 and 2048
respectively. Note that, BSH is limited to 2048 threads as it
is the maximum #Tact value supported by the P100 GPU.
Hence, the PTH implementation fails to efficiently utilize the
GPU hardware and achieves significantly worse performance
than WSH and BSH, in-spite of its use of lower overhead
instructions for histogram updates.

WSH on the other hand is able to achieve reasonable
occupancy rates compared to BSH for small data sets. To
demonstrate this, we present the occupancy rates achieved by
WSH and BSH for data sizes of 2M and 256M in Table II. The
results show that, WSH is able to achieve the same occupancy
rate as BSH for small data sizes. This combined with the use
of lower cost shuffle instruction helps WSH to achieve better
performance for such data sets. However, as the input size
increases (which requires larger partition counts) the BSH im-
plementation is able to achieve significantly higher occupancy
rates than WSH implementation (based on Equation 1).

Data Size 2M 256M
WSH 90% 24.7%
BSH 90% 89%

TABLE II: Occupancy rates of WSH and BSH for 2M and
256M tuples.

2) CUDA Streams: To understand the performance dif-
ference between BSH and PRBC we to look at how these
implementations take advantage of CUDA Streams. As see
in Section IV, both BSH and PRBC overlapps data transfer
and computation using multiple CUDA streams. However, the
PRBC implementation is able to more efficiently overlap data
transfer and computation (Figures 2 and 3). To demonstrate
this, we present the throughput achieved by PRBC and BSH
when the use of multiple CUDA streams is disabled in Figure
5. The results clearly show that when the use of multiple
CUDA streams is disabled, BSH is able to achieve perfor-
mance close to PRBC.

3) Unified Memory & Hardware Page Fault: The GPU
driver groups together page table updates from multiple
threads when using the unified memory feature. To minimize
the number of unique page table updates and associated over-
head. However, it is not possible to group together the requests
from all active threads. In fact, the UMJ implementation
encounters over 6K unique page table updates for a data size of
256M tuples (collected from NVProfile). This is why the use

0
50

100
150
200
250
300
350
400
450
500

2 4 8 16 32 64 128 256

Th
ro

ug
hp

ut
 (M

ill
io

n
Tu

pl
es

 /
s)

Input Size (Million Tuples)

BSH PRBC

Fig. 5: Performance of BSH & PRBC with CUDA Streams
disabled.

500

550

600

650

700

750

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro

ug
hp

ut
 (M

ill
io

n
Tu

pl
es

 /
s)

Z Value

BSH BSH(w/ Skew Handling)

Fig. 6: Performance comparison of BSH & BSH(w/ Skew
Handling) under varying skew levels.

of the unified memory feature leads to significant performance
degradation in UMJ, when compared to PRBC. UMJ-PF on
the other hand is able to avoid page table updates during
kernel execution by prefetching data. Further, UMJ-PF is able
to hide the cost of prefetching by overlapping this operation
with execution of unrelated threads. Hence, it is able to achieve
performance similar to the PRBC implementation. Note that,
the performance of UMJ-PF is still lower than PRBC due to
additional work that needs to be done by UMJ-PF to update
the page tables during data prefetching (not required when
using explicit memory copy instructions).

D. Handling Data Skew & Match Rate

To demonstrate the benefits of our skew handling technique,
we present the throughput achieved by BSH and BSH(w/ Skew
Handling) when joining a skewed data set (256M tuples) that
follows the zipf distribution (z values from 0 to 1). Note that,
BSH addresses data skew by launching additional threads at
runtime (using Dynamic Parallelism); while BSH(w/ Skew
Handling) dynamically re-distributes threads blocks (Section
IV). The results show, that BSH encounters over 12% per-
formance degradation as the skew increases; while BSH(w/
Skew Handling) shows absolutely no performance degradation
even for very high z factor values. Note that, BSH(w/ Skew
Handling) performs better than BSH even for small z factor
values due to the higher overhead of detecting skews in the
BSH implementation.

To demonstrate the efficiency of the technique proposed
to efficiently join input relations with high match rate, we
present the throughput achieved by BSH, BSH(w/ Baseline
Estimation) and BSH(w/ Estimation) when the match rate

0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800

Th
ro

ug
hp

ut
 (M

ill
io

n
Tu

pl
es

 /
s)

Match Rate (%)

BSH BSH(w/ Estimation) BSH(w/ Baseline Estimation)

Fig. 7: Performance comparison of BSH, BSH(w/ Baseline
Estimation) & BSH(w/ Estimation) under varying match rate.

is increased from 100% to 800% (input size is 256M). As
discussed before, BSH groups together partitions using an ad-
ditional pass; while BSH(w/ Baseline Estimation) and BSH(w/
Estimation) groups together partitions by estimating the pos-
sible output size. When compared to BSH(w/ Estimation),
BSH(w/ Baseline Estimation) makes the worst case estimation.
The results show that, BSH(w/ Estimation) outperforms BSH
and BSH(w/ Baseline Estimation) by up to 1.27x and 2.5x
respectively. This is because, BSH(w/ Estimation) does not
require an additional pass compared to BSH and makes better
estimations than BSH(w/ Baseline Estimation), which helps
generate larger groups. Note that, the throughput achieved by
all the implementations drop significantly as the match rate
increases, due to the higher cost of materializing output data.

VI. FINDINGS & FUTURE OPPORTUNITIES

In this section, we highlight the major experimental findings
and present opportunities for future research. The important
findings from Section V include:

• Modern GPUs support varying levels of inter-thread
communication: from high overhead and less resource
intensive to low overhead and high resource intensive.
The choice of the right scheme depends on the workload
as well as the hardware being used.

• The computational capability of GPUs have improved
significantly over the years; while the PCIe bus has
shown very minimal throughput improvement. Further,
new faster interconnects like NVLink are currently not
supported by CPU vendors like Intel and AMD. Hence,
the movement of data between CPU and GPU is a
major bottleneck and systems designers should favour
implementations that can achieve maximum overlap of
data transfer and computation.

• By adding data prefetching, unified memory based im-
plementations on modern GPUs can achieve performance
similar to implementation using explicit/manual memory
copy while also minimizing the complexity of memory
management.

Based on the above findings and the results in the Section
V, it is clear that there are a number of parameters (e.g. tile
size, partition count, thread configuration etc.) that needs to
be tuned when taking advantage of certain GPU architecture
features. Further, optimal values for these parameters often

depend on a number of factors like input size, hardware
configuration etc. Hence, a study on determining the optimal
values for these parameters could be an interesting future
work.

VII. CONCLUSION

In this paper, we revisit the major GPU hash join im-
plementations in the last decade and detail how they take
advantage of different GPU architecture features. Our study
finds that, by efficiently taking advantage of GPU architecture
features like CUDA Streams and shared memory atomic
operations, PRBC outperforms all other existing GPU hash
join implementations. The study also sheds light on the impact
of different architecture features on the hash join operation
and has identified a number of factors guiding the choice of
these features. Finally, the techniques proposed in this study
help avoid any performance degradation when joining data
sets with high skew and achieves up to 1.27x performance
improvement when joining data sets with high match rate.

VIII. ACKNOWLEDGEMENT

This work is supported by a MoE AcRF Tier 2 grant
(MOE2017-T2-1-122) in Singapore.

REFERENCES

[1] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander,
“Relational joins on graphics processors,” in SIGMOD, 2008.

[2] J. He, M. Lu, and B. He, “Revisiting co-processing for hash joins on
the coupled cpu-gpu architecture,” Proc. VLDB Endow., 2013.

[3] R. Rui, H. Li, and Y. C. Tu, “Join algorithms on gpus: A revisit after
seven years,” in ICBD, 2015.

[4] R. Rui and Y.-C. Tu, “Fast equi-join algorithms on gpus: Design and
implementation,” in SSDBM, 2017.

[5] M. Yabuta, A. Nguyen, S. Kato, M. Edahiro, and H. Kawashima,
“Relational joins on gpus: A closer look,” TPDS, 2017.

[6] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “Gpu join processing
revisited,” in DaMoN, 2012.

[7] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili, “Kernel weaver:
Automatically fusing database primitives for efficient gpu computation,”
in MICROArch, 2012.

[8] J. He, S. Zhang, and B. He, “In-cache query co-processing on coupled
cpu-gpu architectures,” Proc. VLDB Endow., 2014.

[9] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and
A. Ailamaki, “Hardware-conscious Hash-Joins on GPUs,” ICDE, 2019.

[10] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main
memory hash join algorithms for multi-core cpus,” in SIGMOD, 2011.

[11] J. Teubner, G. Alonso, C. Balkesen, and M. T. Ozsu, “Main-memory
hash joins on multi-core cpus: Tuning to the underlying hardware,” in
ICDE, 2013.

[12] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs. hash revisited: Fast
join implementation on modern multi-core cpus,” Proc. VLDB Endow.,
2009.

[13] S. Schuh, X. Chen, and J. Dittrich, “An experimental comparison of
thirteen relational equi-joins in main memory,” in SIGMOD, 2016.

[14] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. Owens,
and N. Amenta, “Building an efficient hash table on the gpu,” in GEMS,
2011.

[15] H. Pirk, S. Manegold, and M. Kersten, “Accelerating foreign-key joins
using asymmetric memory channels,” in ADMS, 2011.

[16] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate
cpu vs. gpu performance without the answer,” in ISPASS, 2011.

[17] Y. Yuan, R. Lee, and X. Zhang, “The yin and yang of processing data
warehousing queries on gpu devices,” Proc. VLDB Endow., 2013.

[18] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl, “Hardware-
oblivious parallelism for in-memory column-stores,” Proc. VLDB En-
dow., 2013.

