Exploiting automatic vectorization
to employ SPMD on SIMD registers

Stefan Sprenger (sprengsz@informatik.hu-berlin.de)
Steffen Zeuch (steffen.zeuch@dfki.de)

ULf Leser (leser@informatik.hu-berlin.de)

HardBD & Active ‘18
April 16,2018

mailto:sprengsz@informatik.hu-berlin.de?subject=
mailto:steffen.zeuch@dfki.de
mailto:leser@informatik.hu-berlin.de

Agenda

e SIMD and SPMD

o Automatic Vectorization vs. Intrinsics
e Intel SPMD Program Compiler

e Case Study: Column Scan

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

e SIMD and SPMD

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Single Instruction Multiple Data (SIMD)

9 6 5 9

Input A Input B Result

3 4.2 8| + |6 2 3 1

e Process multiple data elements with one instruction

e Modern CPUs offer dedicated instructions executed on extra-wide
registers

o Differentinstruction set architectures, e.g., SSE (128 Bits), AVX (256
Bits), AVX-512 (512 Bits)

e Degree of parallelism of a SIMD instruction depends on how many
data elements fit into one register, e.g., eight 32-bit ints fit into one
256-bit register

e Developers can use SIMD instructions through intrinsics or rely on
compiler-based automatic vectorization

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Single Program Multiple Data (SPMD)

void square(int[] a,

il A single program that
R HE EE BN appears to be serial is
meutbea - deployed onto multiple
independent processing
units (processors).

}

Program

| | |
void square(int[] a,
int[]b,
intn){
for (int i=0; i<n; ++i) {
b[i] = a[i] * a[il:
}
}

| | |
void square(int[] a,
int[] b,

[| [|
void square(int[] a,
int[]b,

intn){
for (int i=0; i<n; ++i) {
b[i] = a[i] * a[i];
}
}

i The program instances

for (int i=0; i<n; ++i) {
b[i] = a[i] * a[il;

) are concurrently
executed on different
subsets of the data.

}

Processor Processor Processor

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

e Automatic Vectorization vs. Intrinsics

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Automatic Vectorization

e Recent versions of compilers
support automatic vectorization

e Forinstance, they accelerate scalar
for loops with SIMD instructions

e Works only for simple algorithms

e Lacks support of recent instruction
set architectures

e (Cannot compete with intrinsics
code manually tuned by
(experienced) developers

Code Version: [Scalar 8 Auto-vectorized E==1 Intninsics

— 3.93

Speed-up
L)

1 1.04

e

T

..

e
“.en
T
e
“nnn
e
M

GCC ICC Clang++/LLVM

Figure 1. Speed-ups obtained with an auto-vectorized and an
intrinsics-based implementation of a real-world HEVC video de-
coder , shown for the most popular C++ compilers (4K resolution
video decoding, 8 threads on an Intel i7-4770 core with AVX2)

Figure taken from: Pohl et al.: "An Evaluation of Current SIMD Programming Models for C++” (WPMVP, 2016)

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Limitations of SIMD Intrinsics

// Broadcast 32-bit floating-point value a to all elements of dst.
_m256 _mm256_setl_ps (float a);

e Require low-level hardware knowledge
o Specific to the underlying instruction set architecture, e.g., AVX
e Specific to the processed data type, e.g., float

e Resultin hard-to-maintain code when supporting different
hardware architectures or data types

e Forward compatibility

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

e Intel SPMD Program Compiler

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Intel SPMD Program Compiler (ispc)

e Deploys the SPMD execution model on the SIMD registers of
modern CPUs

e Program instances are mapped onto SIMD lanes

o Extension of the C programming language with few new features
that facilitate writing high-performance SPMD programs

e Programs compiled with ispc can be directly called from C/C++
e Supports current CPU and instruction set architectures

o %86, x86-64, Xeon Phi, ARM

o SSE 2/4, AVX, AVX2, AVX512, NEON, ...
e Allows to use multi-threading in addition to SIMD parallelism

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Integrating ispc into your C/C++ project

void scan(int[] data,

void sauare(intl1a. #include <iostream> X
void s int determin #include “ispcscan.h” ;:I[[]c:\f,sel:ltS'
. Tnt c=INT_) . int uppel:) {
| if(a<b){ intmain(intargc, for (i = 0; 1 < n; ++i) {
for(i c=al/b; e gt
) bli] Yelse{ return 0; 0y f(‘zjt:['[].; <'_l°wer)
} c=3a; } if (data[i] <= upper)
} }
C/C++ code ispc code
Sg++-c-0.. Sispc-0..-h...
Object files Object files

\ /

Link and create executable

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

e Case Study: Column Scan

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Experimental Setup

o Scalar, Intrinsics-based, and ispc-based column scan
e Branching and branch-free scan variants
e 1GB of synthetic keys generated with std::rand()
e Synthetic range scans of varying selectivity
e lower bound: random, existing key
e upper bound: lower bound + selectivity * domain

e Server machine equipped with Intel Xeon E5-2620 (2 GHz clock
rate, 256-bit wide SIMD registers, AVX) and 32 GB of main memory

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)

[
\\\
— Intrinsics (Branch-Free) :
N B
I - p——
= :
S ispc (Branch-Free)
5 35 _
b ispc (Branches)
)
3
= Scalar (Branch-Free)
< 175
Scalar (Branches)
0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Query Selectivity

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)

[
Q9,20 = :
-
) A
SD_/ 6.89X speedup
= on average 1.80X speedup
8_ 3’5 : on average
b ispc (Branches)
o
>
o
N 3.82X speedup
— 1,75 on average

Scalar (Branches)
0]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Query Selectivity

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)

v
Intrinsics (Branch-Free)
)
3 5,25
E 2.16X speedup 1.46X speedup
) ispc (Branch-Free)
5 3,5
8— 1.48X speedup
o
S
= Scalar (Branch-Free)
< 175
0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Query Selectivity

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Impact of Key Size on Performance of ispc-based scan

B With Branches B Branch-Free

v
-
O
5
O
£ 525
)]
IS
S
» 3,5
o)
>
O
S 1,75
0,
)
Q
N

0

8 Bits 16 Bits 32 Bits 04 Bits
Key Size

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Impact of Key Type on Performance of ispc-based scan

B With Branches B Branch-Free

~

w

—

Speedup over scalar execution
N

o

unsigned int32 signed int32 float
Key Type

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Code Complexity

B With Branches B Branch-Free

50

o 37,5
O
o)
@

ko) 25
(p)
)
(-
5

12,5

0

Scalar IspcC Intrinsics

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Next Steps

e Investigate more complex database algorithms, e.g., joins, hashing,
or bloom filters

e Run experiments on many-core CPUs (70+ cores, 4-way
hyperthreading, AVX-512) and compare performance to modern
GPUs

e Compare to other approaches to automatic vectorization, e.g.,
OpenCL, CilkPlus, and OpenMP

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Summary

e ispc overcomes the limitations of
SIMD Intrinsics 4

e We compared branch-free and
branching variants of a SPMD-based SPMD on SIMD
column scan with a scalar
implementation and manually-tuned
Intrinsics code

Intrinsics

Performance

e ispc achieves notable speedups over Automatic
scalar implementations, however Vectorization
manually tuned Intrinsics code is : >
still slightly more efficient Convenience

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

