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Single Instruction Multiple Data (SIMD)
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• Process multiple data elements with one instruction 

• Modern CPUs offer dedicated instructions executed on extra-wide 
registers 

• Different instruction set architectures, e.g., SSE (128 Bits), AVX (256 
Bits), AVX-512 (512 Bits) 

• Degree of parallelism of a SIMD instruction depends on how many 
data elements fit into one register, e.g., eight 32-bit ints fit into one 
256-bit register 

• Developers can use SIMD instructions through intrinsics or rely on 
compiler-based automatic vectorization
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Single Program Multiple Data (SPMD)
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A single program that 
appears to be serial is 
deployed onto multiple 
independent processing 
units (processors). 

The program instances 
are concurrently 
executed on different 
subsets of the data.

void square(int[] a,              
                       int[] b, 
                       int n) { 
  for (int i=0; i<n; ++i) { 
    b[i] = a[i] * a[i]; 
  } 
}

Program
Input Data

void square(int[] a,              
                       int[] b, 
                       int n) { 
  for (int i=0; i<n; ++i) { 
    b[i] = a[i] * a[i]; 
  } 
}

void square(int[] a,              
                       int[] b, 
                       int n) { 
  for (int i=0; i<n; ++i) { 
    b[i] = a[i] * a[i]; 
  } 
}

void square(int[] a,              
                       int[] b, 
                       int n) { 
  for (int i=0; i<n; ++i) { 
    b[i] = a[i] * a[i]; 
  } 
}

Processor Processor Processor
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Automatic Vectorization

7

• Recent versions of compilers 
support automatic vectorization 

• For instance, they accelerate scalar 
for loops with SIMD instructions 

• Works only for simple algorithms 

• Lacks support of recent instruction 
set architectures 

• Cannot  compete with intrinsics 
code manually tuned by 
(experienced) developers

Figure taken from: Pohl et al.: “An Evaluation of Current SIMD Programming Models for C++” (WPMVP, 2016)
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Limitations of SIMD Intrinsics
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• Require low-level hardware knowledge 

• Specific to the underlying instruction set architecture, e.g., AVX 

• Specific to the processed data type, e.g., float 

• Result in hard-to-maintain code when supporting different 
hardware architectures or data types 

• Forward compatibility

// Broadcast 32-bit floating-point value a to all elements of dst. 
__m256 _mm256_set1_ps (float a);
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Intel SPMD Program Compiler (ispc)
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• Deploys the SPMD execution model on the SIMD registers of 
modern CPUs 

• Program instances are mapped onto SIMD lanes 

• Extension of the C programming language with few new features 
that facilitate writing high-performance SPMD programs 

• Programs compiled with ispc can be directly called from C/C++ 

• Supports current CPU and instruction set architectures 

• x86, x86-64, Xeon Phi, ARM 

• SSE 2/4, AVX, AVX2, AVX512, NEON, … 

• Allows to use multi-threading in addition to SIMD parallelism
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Integrating ispc into your C/C++ project
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void square(int[] a,              
                       int[] b, 
                       int n) { 
  for (int i=0; i<n; ++i) { 
    b[i] = a[i] * a[i]; 
  } 
}

void square(int[] a,              
                       int[] b, 
                       int n) { 
  for (int i=0; i<n; ++i) { 
    b[i] = a[i] * a[i]; 
  } 
}

void scan(int[] data, 
                   int[] results, 
                   int lower, 
                   int upper) { 
  for (i = 0; i < n; ++i) { 
    if (data[i] >= lower) 
      if (data[i] <= upper) 

int determine_foo() { 
  int c = INT_MAX; 
  if (a < b) { 
    c = a / b; 
  } else { 
    c = a; 
  }

#include <iostream> 
#include “ispcscan.h” 

int main(int argc, 
                 char **argv) { 
  return 0; 
}

C/C++ code ispc code

Object files Object files

$ g++ -c -o … $ ispc -o … -h …

Link and create executable
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Experimental Setup
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• Scalar, Intrinsics-based, and ispc-based column scan 

• Branching and branch-free scan variants 

• 1GB of synthetic keys generated with std::rand() 

• Synthetic range scans of varying selectivity 

• lower bound: random, existing key 

• upper bound: lower bound + selectivity * domain 

• Server machine equipped with Intel Xeon E5-2620 (2 GHz clock 
rate, 256-bit wide SIMD registers, AVX) and 32 GB of main memory
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ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)
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ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)
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ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)
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Impact of Key Size on Performance of ispc-based scan
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Impact of Key Type on Performance of ispc-based scan
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Code Complexity
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• Investigate more complex database algorithms, e.g., joins, hashing, 
or bloom filters 

• Run experiments on many-core CPUs (70+ cores, 4-way 
hyperthreading, AVX-512) and compare performance to modern 
GPUs 

• Compare to other approaches to automatic vectorization, e.g., 
OpenCL, CilkPlus, and OpenMP
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Summary
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• ispc overcomes the limitations of 
SIMD Intrinsics 

• We compared branch-free and 
branching variants of a SPMD-based 
column scan with a scalar 
implementation and manually-tuned 
Intrinsics code 

• ispc achieves notable speedups over 
scalar implementations, however 
manually tuned Intrinsics code is 
still slightly more efficient
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