
Exploiting automatic vectorization
to employ SPMD on SIMD registers

Stefan Sprenger (sprengsz@informatik.hu-berlin.de)
Steffen Zeuch (steffen.zeuch@dfki.de)
Ulf Leser (leser@informatik.hu-berlin.de)

HardBD & Active ’18
April 16, 2018

mailto:sprengsz@informatik.hu-berlin.de?subject=
mailto:steffen.zeuch@dfki.de
mailto:leser@informatik.hu-berlin.de

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

2

• SIMD and SPMD
• Automatic Vectorization vs. Intrinsics
• Intel SPMD Program Compiler
• Case Study: Column Scan

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

3

• SIMD and SPMD
• Automatic Vectorization vs. Intrinsics
• Intel SPMD Program Compiler
• Case Study: Column Scan

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Single Instruction Multiple Data (SIMD)

4

• Process multiple data elements with one instruction

• Modern CPUs offer dedicated instructions executed on extra-wide
registers

• Different instruction set architectures, e.g., SSE (128 Bits), AVX (256
Bits), AVX-512 (512 Bits)

• Degree of parallelism of a SIMD instruction depends on how many
data elements fit into one register, e.g., eight 32-bit ints fit into one
256-bit register

• Developers can use SIMD instructions through intrinsics or rely on
compiler-based automatic vectorization

Input A

3 4 2 8

Input B

6 2 3 1+ =
Result

9 6 5 9

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Single Program Multiple Data (SPMD)

5

A single program that
appears to be serial is
deployed onto multiple
independent processing
units (processors).

The program instances
are concurrently
executed on different
subsets of the data.

void square(int[] a,
 int[] b,
 int n) {
 for (int i=0; i<n; ++i) {
 b[i] = a[i] * a[i];
 }
}

Program
Input Data

void square(int[] a,
 int[] b,
 int n) {
 for (int i=0; i<n; ++i) {
 b[i] = a[i] * a[i];
 }
}

void square(int[] a,
 int[] b,
 int n) {
 for (int i=0; i<n; ++i) {
 b[i] = a[i] * a[i];
 }
}

void square(int[] a,
 int[] b,
 int n) {
 for (int i=0; i<n; ++i) {
 b[i] = a[i] * a[i];
 }
}

Processor Processor Processor

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

6

• SIMD and SPMD
• Automatic Vectorization vs. Intrinsics
• Intel SPMD Program Compiler
• Case Study: Column Scan

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Automatic Vectorization

7

• Recent versions of compilers
support automatic vectorization

• For instance, they accelerate scalar
for loops with SIMD instructions

• Works only for simple algorithms

• Lacks support of recent instruction
set architectures

• Cannot compete with intrinsics
code manually tuned by
(experienced) developers

Figure taken from: Pohl et al.: “An Evaluation of Current SIMD Programming Models for C++” (WPMVP, 2016)

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Limitations of SIMD Intrinsics

8

• Require low-level hardware knowledge

• Specific to the underlying instruction set architecture, e.g., AVX

• Specific to the processed data type, e.g., float

• Result in hard-to-maintain code when supporting different
hardware architectures or data types

• Forward compatibility

// Broadcast 32-bit floating-point value a to all elements of dst.
__m256 _mm256_set1_ps (float a);

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

9

• SIMD and SPMD
• Automatic Vectorization vs. Intrinsics
• Intel SPMD Program Compiler
• Case Study: Column Scan

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Intel SPMD Program Compiler (ispc)

10

• Deploys the SPMD execution model on the SIMD registers of
modern CPUs

• Program instances are mapped onto SIMD lanes

• Extension of the C programming language with few new features
that facilitate writing high-performance SPMD programs

• Programs compiled with ispc can be directly called from C/C++

• Supports current CPU and instruction set architectures

• x86, x86-64, Xeon Phi, ARM

• SSE 2/4, AVX, AVX2, AVX512, NEON, …

• Allows to use multi-threading in addition to SIMD parallelism

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Integrating ispc into your C/C++ project

11

void square(int[] a,
 int[] b,
 int n) {
 for (int i=0; i<n; ++i) {
 b[i] = a[i] * a[i];
 }
}

void square(int[] a,
 int[] b,
 int n) {
 for (int i=0; i<n; ++i) {
 b[i] = a[i] * a[i];
 }
}

void scan(int[] data,
 int[] results,
 int lower,
 int upper) {
 for (i = 0; i < n; ++i) {
 if (data[i] >= lower)
 if (data[i] <= upper)

int determine_foo() {
 int c = INT_MAX;
 if (a < b) {
 c = a / b;
 } else {
 c = a;
 }

#include <iostream>
#include “ispcscan.h”

int main(int argc,
 char **argv) {
 return 0;
}

C/C++ code ispc code

Object files Object files

$ g++ -c -o … $ ispc -o … -h …

Link and create executable

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Agenda

12

• SIMD and SPMD
• Automatic Vectorization vs. Intrinsics
• Intel SPMD Program Compiler
• Case Study: Column Scan

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Experimental Setup

13

• Scalar, Intrinsics-based, and ispc-based column scan

• Branching and branch-free scan variants

• 1GB of synthetic keys generated with std::rand()

• Synthetic range scans of varying selectivity

• lower bound: random, existing key

• upper bound: lower bound + selectivity * domain

• Server machine equipped with Intel Xeon E5-2620 (2 GHz clock
rate, 256-bit wide SIMD registers, AVX) and 32 GB of main memory

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)

14

Th
ro

ug
hp

ut
 (G

B/
se

c)

0

1,75

3,5

5,25

7

Query Selectivity

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Scalar (Branches)

Scalar (Branch-Free)

ispc (Branch-Free)

ispc (Branches)

Intrinsics (Branch-Free)

Intrinsics (Branches)

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)

15

Th
ro

ug
hp

ut
 (G

B/
se

c)

0

1,75

3,5

5,25

7

Query Selectivity

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Scalar (Branches)

ispc (Branches)

Intrinsics (Branches)

3.82X speedup
on average

6.89X speedup
on average 1.80X speedup

on average

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

ispc vs. Intrinsics vs. Scalar (4-byte unsigned int keys)

16

Th
ro

ug
hp

ut
 (G

B/
se

c)

0

1,75

3,5

5,25

7

Query Selectivity

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Scalar (Branch-Free)

ispc (Branch-Free)

Intrinsics (Branch-Free)

1.48X speedup

2.16X speedup 1.46X speedup

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Impact of Key Size on Performance of ispc-based scan

17

Sp
ee

du
p

ov
er

 s
ca

la
r e

xe
cu

tio
n

0

1,75

3,5

5,25

7

Key Size

8 Bits 16 Bits 32 Bits 64 Bits

With Branches Branch-Free

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Impact of Key Type on Performance of ispc-based scan

18

Sp
ee

du
p

ov
er

 s
ca

la
r e

xe
cu

tio
n

0

1

2

3

4

Key Type

unsigned int32 signed int32 float

With Branches Branch-Free

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Code Complexity

19

Li
ne

s
of

 C
od

e

0

12,5

25

37,5

50

Scalar ispc Intrinsics

With Branches Branch-Free

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Next Steps

20

• Investigate more complex database algorithms, e.g., joins, hashing,
or bloom filters

• Run experiments on many-core CPUs (70+ cores, 4-way
hyperthreading, AVX-512) and compare performance to modern
GPUs

• Compare to other approaches to automatic vectorization, e.g.,
OpenCL, CilkPlus, and OpenMP

Sprenger, Zeuch, Leser: Exploiting automatic vectorization to employ SPMD on SIMD registers

Summary

21

• ispc overcomes the limitations of
SIMD Intrinsics

• We compared branch-free and
branching variants of a SPMD-based
column scan with a scalar
implementation and manually-tuned
Intrinsics code

• ispc achieves notable speedups over
scalar implementations, however
manually tuned Intrinsics code is
still slightly more efficient

Pe
rf

or
m

an
ce

Convenience

Intrinsics

Automatic
Vectorization

SPMD on SIMD

