

Conflict Detection-based Run-Length Encoding – AVX-512 CD Instruction Set in Action

Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Dirk Habich, Wolfgang Lehner

HardBD & Active'18 Workshop in Paris, France on April 16, 2018

Challenges for Data Processing Nowadays

Lightweight Compression Techniques

Vectorization is crucial from performance perspective

Vectorization using SIMD

Single Instruction Multiple Data (SIMD)

same instruction on multiple data points simultaneously

Vector Size [Bytes

Development of Intel's SIMD Extension

- Trend to larger vector registers
 - 128-bit (SSE)
 - 256-bit (AVX and AVX2)
 - 512-bit (AVX-512)
- Trend to more instructions

Parallel data

Instruction stream

Dresden Database

Systems Group

Vectorization and Lightweight Data Compression

Most algorithms have been proposed for 128-bit SIMD registers

Processing 4 elements (32 bit integers) at one

Example Run-Length Encoding

- View subsequent occurrences of the same value as a run
- Each run representable by its value and length \rightarrow just two integers

uncompressed

RLE-SIMD

Uses SIMD instructions to parallelize comparisons

RLE-SIMD: Compression

Evaluation using Different Vector Sizes

Compression Speed

Measured in million integers per second (mis)

Speedup

Compared to baseline of 128-bit

Non-Well Performing Area

Reasons

INIVERSITÄ

- For large run lengths, the number of loaded integers approaches more or less 100%, i.e. every value is only processed once.
- RLE vectorization uses a significantly higher number of load operations for sequences with short runs.
- The redundant processing dramatically increases with increasing vector widths.

SIMD – New Instruction Sets

Step 1: Run Detection

Conflict Detection

Resulting bitmask

Count leading zeros

Are leading zeros descending?

Step 3: Storing

Evaluation – Load Instructions

Evaluation- Vector Instructions

Vector instruction count

Evaluation

TECHNISCHE UNIVERSITÄT DRESDEN

Runtime Comparison

- Intel Xeon Phi Knights Landing Processor
- RLE512CD (Aligned) outperforms state-of-the-art for small average run lengths

23

RLE512CD

13

3

RLE512

Compression speed

33

avg. run length

43

53

RLE512CDAligned

63

Evaluation

Compression Speed

Runtime Comparison

- Intel Xeon 6130 Processor
- Similar results

Summary

Development of Intel's SIMD Extension

- Trend to larger vector registers
 - 128-bit (SSE)
 - 256-bit (AVX and AVX2)
 - 512-bit (AVX-512)
- Trend to more instructions

Run Length Encoding

 Proposed novel implementation using AVX512-CD functionality

Compression speed

Conflict Detection-based Run-Length Encoding – AVX-512 CD Instruction Set in Action

Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Dirk Habich, Wolfgang Lehner

HardBD & Active'18 Workshop in Paris, France on April 16, 2018