
1

Life Cycle of Transactional Data in In-memory Databases
Amit Pathak#1, Aditya Gurajada#2, Pushkar Khadilkar#3

SAP Labs
Magarpatta City, Pune - India

1 amit.pathak@sap.com, 2 aditya.gurajada@sap.com, 3 pushkar.khadilkar@sap.com

Abstract— The last decade has witnessed an explosive growth

in database engines optimized for main memory based execution.
However, the requirement to store all the data in-memory makes
such processing commercially costly and unviable for very large
databases. In this paper, we present novel techniques optimized
for transactional workloads where only a small portion of the
entire database is “hot” and needs to be in-memory. The SAP ASE
hybrid database engine delivers high-performance transaction
processing transparently on tiered storage consisting of
traditional page-oriented disk based storage, for cold data, and in-
memory row storage for fast processing.

Our techniques make storage choice for the rows based on
access patterns of the OLTP workload. This is done by monitoring
and analysing the workload running in the system with minimal
impact to the transaction performance. The techniques also adapt
to the workload to alter storage choices for the data, which is
completely transparent to the application and provides continuous
data access. The storage choices are not made at gross table or
partition level but made at the level of individual row and type of
DML operation.

Our result show that these techniques help reduce the memory
footprint by a large margin in OLTP workload even while
providing performance parity with a setup where all data is stored
in-memory.

I. INTRODUCTION

Traditionally database system store data on disk, usually in
a page-oriented layout, and use various caching techniques to
keep important pages in the buffer cache for efficient
processing. Many in-memory database engines promise
improved performance and often require that the entire
database be in-memory, under the premise of availability of
cheaper memory [15]. However, we argue that, for very large
databases, keeping all the data in-memory may be
commercially unviable. Moreover, in transactional systems, we
typically see only some small portion of the database to be
active, or “hot” during some period of activity. Thus, retaining
large unused portions of the database in-memory may
potentially be a wasteful use of premium memory resource.

The Business Transactions In-Memory (BTrim) architecture
of SAP ASE [3] is a hybrid storage model across traditional
page-oriented disk-storage and row-oriented in-memory
storage. This allows storing some part of the data (hot data)
from one or more tables in the In-Memory Row Store (aka
IMRS) and the remaining bulk of the data (warm / cold data) is
stored in a traditional disk based store (aka page-store). Just as
the buffer cache is used to hold the working set of data pages in
the cache, the IMRS is used to store in-memory “hot” rows, in
a row-oriented layout. The IMRS acts as a performance
accelerator on top of the buffer cache, and is both a store (for
newly inserted or updated rows) and a cache (for frequently

accessed hot rows). The BTrim engine supports full ACID-
compliant transaction processing to the data independent of its
storage without requiring any application changes. For example,
a single statement may process (select or update) hot data in the
IMRS, and may also process cold data on the page-store.
Alternately, a statement may migrate data from the page-store
to the IMRS if it finds the data as hot. Subsequent access to
such hot data continues in the IMRS.

The hot data in the IMRS may become warm / cold over time
and is moved back to the page-store to make IMRS memory
available for newer hot data. This data-flow is referred to as
Information Life Cycle Management (ILM). Typically, this
data-ageing is performed across different data storage tiers.
With our ILM-techniques, we achieve row-level data ageing
which is tightly integrated in the core database engine.

We design for the data and access patterns seen in OLTP
workloads under the assumption that not all data is important
enough to be kept in-memory all the time. The goal of our ILM-
techniques is to optimally use available memory for hot rows,
thereby reducing the memory requirement for the database. Our
aim is to deliver performance gains comparable to what can be
achieved with a fully memory-resident database.

The rest of the paper is organized as follows. Section II
describes at a high-level the hybrid storage architecture. This
lays the background for how the temperature-aware data
management is integrated inside a commercial DBMS engine.
In section III, we present our design objectives and motivation
behind this work. Different run-time parameters affecting our
design choices are discussed. In section IV we discuss the
techniques used for efficiently storing hot data in-memory.
There are two significant contributions. Section V presents one
core contribution of our work, which is the support for auto
IMRS partition tuning. In section VI, we present the other
significant contribution of our work, which are the mechanisms
to efficiently identify cold data in the IMRS and re-locate (i.e.
Pack) such data back to the page-store, without adversely
affecting run-time performance. In section VII, we discuss how
these Pack-ILM techniques are organically integrated with
concurrent DMLs. Section VIII discusses some experimental
evaluation of this work using OLTP benchmarks based on the
TPC-C benchmark. Related work is discussed in section IX
followed by our conclusions.

II. BTRIM ARCHITECTURE

The BTrim architecture is a deeply integrated extension to
the existing store-and-access layers of the SAP ASE DBMS
engine [1][2], offering high-performance access to in-memory
“hot” data rows. It extends the capabilities of the existing

2

engine to leverage large memory systems running on multi-core
machines, while maintaining full compatibility for existing
databases and T-SQL constructs. The new components of the
architecture are designed to co-exist with and augment existing
server sub-systems (like the buffer cache and logging sub-
system) and are designed to use algorithms and techniques that
offer superior multi-core scalability and high concurrency.

Figure 1 shows the salient components of the new
architecture and how data is organized and accessed.

Fig. 1. BTrim architecture for In-Memory Transaction Processing

Traditional disk-based page-oriented storage is provided and

data is read into the buffer cache (green shaded box). This data
is referred to as page-store data. Periodically, hot data may be
migrated from the page-store (buffer-cache) to the IMRS (red
shaded box). Once migrated to the IMRS, the buffers holding
the page-store image of the data can be recycled for other uses.
There is no double-buffering of rows beyond the initial copy
created in the IMRS due to migration.

New inserts go directly to the IMRS without any footprint in
the page-store. Over-time, cold data is harvested from the
IMRS and moved back to the buffer-cache, through an
operation referred to as Pack. At that time, any data that was
first inserted to the IMRS finds a location in the page-store.

Some or all the tables in a database can be altered to use the
IMRS for improved performance, and such tables are referred
to as IMRS-enabled tables. All updates to in-memory rows are
performed using in-memory versioning, a scheme that is also
used to support time-stamp based snapshot isolation for IMRS-
enabled tables. Over time, only some part of a table may be in-
memory. It is not necessary that a table marked for in-memory
storage needs to have all its data in-memory. In Figure 1, the
arrows indicating movement of hot data to the IMRS and of
cold data to the buffer cache imply that IMRS-enabled tables
can straddle the buffer cache and the IMRS. Access methods
transparently locate the row from one of the two stores using
internal scan methods.

Page-based BTree indexes are enhanced to transparently
scan rows either in the page-store or in the IMRS. Index access
goes through an in-memory lookup table, the RID-Map table
(yellow shaded box), to locate the row either in the IMRS or in
the buffer cache. Table-specific non-logged, in-memory hash-

indexes are built on top of lock-free hash tables. Hash indexes
span only in-memory rows and provide a fast-path performance
accelerator under unique BTree indexes.

SQL statements and transactions may access tables or data
that is in the page-store or in the IMRS, without any restrictions.
Changes to page-store rows are logged in the (existing)
transaction log labelled as syslogs. Changes to in-memory rows
are made durable by logging in a (new) counterpart log,
labelled as sysimrslogs above. Both logs are disk-based, and
can be placed on SSDs for faster logging performance.

For the page-store, traditional data checkpoint based redo-
undo recovery is performed. However, for the data in the IMRS,
checkpoint does not flush any data to disk. All the IMRS data
is recovered by doing a redo-only recovery of sysimrslogs. The
system recovers both transaction logs independently with some
lock-step ordering of recovery phases, to ensure a consistent
database post-recovery.

Several new sub-systems are added to the product to
efficiently use IMRS memory for hot data, without causing
application outages. ILM strategies are woven through the
access methods to choose whether data is stored in the IMRS
or in the page store. Multi-threaded, non-blocking Garbage
collection (IMRS-GC) is deployed to efficiently reclaim
memory from older versions without affecting transaction
performance. Pack is a new sub-system that, in cooperation
with the memory manager and based on ILM-rules, efficiently
relocates cold (transactionally inactive) data out of the IMRS to
the page-store (buffer cache). Pack and ILM work together to
guarantee stable memory utilization and enhanced performance
for OLTP activity

A key sub-system supporting the IMRS is a high-
performance fragment-memory manager which is highly
optimized for best-fit low-latency memory allocation and
reclamation on multiple cores.

III. DESIGN OBJECTIVES AND MOTIVATION

To motivate our design choices, we use the set of tables in
the TPCC schema [12] as a reference workload in our examples.
The set of tables in this schema have access patterns
commonly-seen in typical OLTP applications such as update-
heavy table, insert-only table, read-mostly / read-only lookup
table, tables of different sizes and so on. Table names from the
TPCC schema are identified by use of bold typeface.

ILM-techniques in the BTrim architecture address two
important requirements:

1. Identify data as hot which can be stored in the IMRS
2. Identify and remove cold data from the IMRS
Our schemes to address these requirements largely rely on

the following aspects of access patterns to decide which data to
store and retain in-memory.

Frequency of data access: It is important to only keep the
often-used data in memory and either to not store in the IMRS
or move infrequently accessed data from the IMRS to the page-
store.

Contention on the page-store: Traditional page-store are
often seen to be non-performant [13][14] due to factors such as
page contention, latch contention, etc. IMRS uses a row-

Redo/Undo
Transaction Log

R/W Buffer Cache

IMRS
Paged I/O

Hot Data
Inserts

RID-Map Table

Redo-Only
Transaction Log

for In-Memory DMLs

Cold Data Hot Data

3

oriented architecture rather than page-oriented, and completely
avoids buffer cache access, so it does not have any page-level
contention issues.

Our solutions identify potential contention conditions on the
page-store and decide to perform such operations in-memory
instead of in the page-store.

Type of operation: Our techniques distinguish between the
type of operation – INSERT, SELECT, UPDATE, DELETE
(ISUD) – to decide whether to store the data accessed by those
operations in-memory. Some operations access and create hot
data while other perform just an ad-hoc access to the data. Our
techniques distinguish between various types of such operation
using runtime statistics gathered from the workload and make
choices on a per-row basis to store data in-memory.

Granularity of storage decision: This is an important
aspect as all the data in a database, in a table or partition need
not be always hot or cold. Making a choice, say, to store all the
data in-memory for an entire partition, or for the whole table,
can lead to excessive memory requirements especially for very
large tables. Our techniques perform storage decision during
every operation on the row to decide if it needs to be stored in
memory for faster access. The storage choices are optimized to
avoid performance impact in different ways.

In transactional workloads, oftentimes there are partitions
which can be considered either completely hot or completely
cold, so we also make storage choice decisions at the partition
(and operation) level. For example, the warehouse table is a
small heavily-updated table and can always be in-memory
whereas the history table is an insert-only but never accessed
table so need not be in-memory. Such decisions are made
internally in our system.

The main objective of ILM is to keep cache utilization stable
while retaining mostly hot rows in memory to provide benefits
of fast performance. Other objectives are:
 Application compatibility: A major requirement for ILM

was to provide application compatibility. Use of ILM / IMRS
should not require major application re-writes or lead to
application / data outages.

 Minimal tuning for user input: One common method used
for ILM by in-memory systems such as Hekaton [4] is to
accept input from users about placement of rows. Our
experience working with enterprise grade systems has
revealed that it is hard for users to know which tables are
suited for in-memory processing amongst potentially
thousands of tables used by the application. ILM should make
decisions on row storage requiring as little input from users
as possible.

 Respond to changing workloads: Applications often cause
changing workloads on some tables. If the system can auto-
tune to these changing patterns, then user intervention is not
required.

 Low transaction impact: ILM processing should have low
transaction impact on user transactions. Any additional
processing should be performed in the background with little
or no blocking for user transactions.

 OLTP characteristic tuning: ILM processing takes into
account table profiles typically seen in traditional OLTP

workloads. We anticipate that for most OLTP workloads
tables can be characterized into following broad categories.
- Small and frequently updated e.g., warehouse.
- Medium table which is frequently inserted or updated.
- Large table which is insert only or update heavy, but usually

only a small portion of such large tables are active.
These characteristics serve as guiding design principles for

ILM. Small and frequently updated tables are to be retained in
the IMRS. For medium-sized tables, data is attempted to be
retained while it is active and typically we expect only some
portion of the table to be residing in the IMRS. For large tables,
we expect that some small slice of data is typically active, so a
small percentage of such large tables’ data may be in-memory.

IV. STORING HOT DATA IN-MEMORY

We decide whether to store a row in-memory at runtime
when a statement makes access to the row. Under the
assumption that a newly inserted row will most likely be
accessed again, for the most part, inserts will be directed to the
IMRS initially, thereby also avoiding any contention at the
page-level.

At the first access to a row in the page-store, it is not easy to
predict if the row would be accessed frequently in near future.
Simple heuristics based on scan type, hotness of buffer etc. are
used to determine row hotness. We take into account access
patterns specific to a workload to determine which rows are
considered “hot”. For example, a row from the page-store is
brought into the IMRS if it is accessed through a unique index
(point query or updates), in anticipation that such rows may be
re-accessed by the workload. Most OLTP tables tend to have a
primary key, and access driven by unique index key access is a
commonly-seen usage. For example, in TPCC, the warehouse
table is accessed and updated by most of the transactions,
driven by primary key access. By our technique, in this case, all
rows in the warehouse table will be considered “hot” and will
remain in-memory.

V. AUTO IMRS PARTITION TUNING

SAP ASE supports semantic partitioning of tables (and
indexes). For a partitioned table, individual partitions may be
affected differently by the workload. As an example, in a range-
partitioned orders table, partitioned on the order_date column,
the rows from partition holding most recent orders that are
processed will tend to be “hot”. An unpartitioned table is
treated as single-partitioned table. All ILM techniques, such as
monitoring, metrics collection, analysis etc., are applied at a
partition-level. For an unpartitioned table, these will be applied
at the table-level. In the following sections, the term partition
must be understood as an individual data partition for a
partitioned table, or the entire table for an unpartitioned table.

This technique disables or re-enables use of in-memory
storage for certain ISUD operations on certain partitions by
monitoring the workload on rows in the IMRS and in the page-
store. Auto IMRS partition tuning results in the following
choices:

4

 Disallow storing rows in-memory for some partition if it
finds that the rows brought in the IMRS for that partition are
not significantly reused by the workload.

 Enable IMRS use for a partition if performing in-memory
operations may provide large performance gain over page-
store due to issues like contention (in the buffer cache) or
change in workload and possibility of increase in reuse
pattern for the rows in a partition.
Using the IMRS for all the tables may require large memory

but users may not want to (or may not be able to) handpick
some hot tables as IMRS-enabled. Auto-partition tuning
technique allows the user to enable IMRS for all the tables and
ensures that the server will intelligently use IMRS-storage only
if it benefits for a specific partition / table, thereby keeping
memory usage optimal.

Auto-partition tuning involves a set of strategies that are
described below.

A. Monitoring the workload

To effectively perform workload analysis, some counters
need to be maintained by the execution engine. However,
maintaining counters slows down the transaction performance
especially in multi-core system due to cache-invalidations
resulting from updates to the counters.

To avoid the performance degradation due to monitoring, an
efficient mechanism to monitor the workload is provided. This
is implemented using per-CPU core-friendly counters to
capture various operations happening in the IMRS and
aggregating them across all the counters to get the current value
of the counter. This ensures that there is no cache invalidation
to modify this counter, as the memory for a counter is updated
on only one core and the counter always exists in the cores’
L1/L2 cache. Many of the ILM-techniques explained later use
these simple counters. Some of the important counters used are:
Partition-specific IMRS-memory used, number of rows stored
in-memory for a partition, total number of operations which
accessed row stored in-memory for the partition (re-use count),
number of operations performed on pages in the partition,
number of operations on page-store which observed contention
etc. In addition, per-row access timestamps are maintained to
loosely track row hotness. These timestamps are updated
occasionally when rows are accessed, and are not seen to cause
any performance overheads.

B. Self-tuning

Auto-partition tuning to make disablement and re-
enablement decisions is performed by a background Pack
thread. This is important as the user does not need to execute
some commands periodically for this to happen and the system
responds to the workload continuously. Self-tuning is done by
the Pack thread which wakes up after some large number of
transactions complete and then examines the above counters to
observe various patterns and makes the decision accordingly.
The time window between such large number of transaction is
referred to as the tuning window, usually in the order of a few
minutes. Self-tuning decisions take into consideration counters
observed in the previous and present tuning window to respond

to changing workload patterns. Since self-tuning uses counter
difference to identify new IMRS usage for a partition it results
in access-pattern based ageing. For example, if a partition had
high re-use initially and then was not used much later, then later
tuning-cycle would determine partition as cold as it does not
rely on historical counters alone.

The choice of either enabling or disabling IMRS usage for a
partition is only applied if the same choice is made successively
for few tuning windows. This avoids a situation of hysteresis
where dynamically changing workloads repeatedly result in a
change in the IMRS-enablement for a partition.

C. Disable in-memory operations on a partition

Partition tuning disables IMRS usage for partitions after
careful workload analysis of operations performed in the IMRS.
Following heuristics come into play for partition disablement:

- Average reuse of rows: Re-use of rows is the number of
select / update / delete operations on rows while they are in the
IMRS. Partitions with low re-use rate for rows may not benefit
much by storing rows in the IMRS, rather they will
unnecessarily consume the IMRS memory. If a partition has a
low re-use rate, then its IMRS usage is likely to be disabled.

- Partition IMRS utilization: If the memory footprint of a
partition in the IMRS is small (say, < 1% of the IMRS cache),
it is not considered for disablement. Such small partitions do
not consume much memory, therefore, disabling them may not
gain much IMRS cache capacity. This heuristic also guards
against a premature disablement decision when a table is newly
created, or data is loaded into an empty table.

- IMRS cache utilization: If in-memory storage has lots of
free memory then none of the partitions are considered for
disablement. Reason behind this heuristic is that it is not
necessary to turn off IMRS usage if there is enough memory in
the cache. This heuristic guards against a premature
disablement decision after a server boot (when applications are
initializing new partition accesses) or for a new database
creation.

- New IMRS usage by a partition: Slow growing partitions
do not cause a huge load on the IMRS cache. Therefore, if there
are not enough new rows brought into the IMRS for a partition,
then it may remain as IMRS enabled. This heuristic also avoids
making a disablement choice for partitions which are active
during only some intervals of the day, week, etc. For example,
continent specific partitions.

D. Enable in-memory operations on a partition

Partition tuning may turn off IMRS usage for a partition due
to low re-use operation on the rows in the IMRS for that
partition. Such disablement could result in performance drop in
some cases. This technique internally identifies such cases and
re-enables use of the IMRS for such partitions using the
following heuristics:

- Contention on the page-store: If a partition is disabled for
IMRS use and operations on the page-store experience
contention then such partitions may be re-enabled for IMRS use.

- Increase in reuse operation: If the number of reuse
operations on a partition during the tuning window increases
considerably compared to the reuse in the tuning window in

5

which the partition was disabled for IMRS-use then the
partition is again re-enabled for IMRS-use.

VI. PACKING COLD DATA FROM THE IMRS

Identifying cold data in the IMRS and relocating such data
to the page-store (sometimes also referred to as anti-caching
[17]) is a key component of our architecture. We call this
operation as Pack. In our BTrim architecture [3], Pack
operation is offloaded from user transactions and is performed
automatically by one or more background Pack threads. The
pack sub-system must balance the volume of data packed
versus the load of newer data coming to the IMRS. This section
describes the techniques used to achieve the following:
Determine if a row is cold: It is important to identity if a data-

row is cold or not before packing it. If a hot row is packed, it
may be accessed by subsequent transaction(s) which will
again bring it back to the IMRS. This not only wastes
processing performed by the pack operation but also slows
down transactions as they have to access hot data from the
page-store and migrate it to the IMRS.

Locate cold rows efficiently: The in-memory store may have
a lot of rows and many of them will be hot rows so locating
colder rows quickly is important. If the pack sub-system
spends a lot of time in finding such cold rows, then it will be
inefficient and may not be able to keep with the new load
coming to the IMRS.
The rest of this section discuss strategies implemented to

efficiently locate and pack cold rows, and to maintain stable
IMRS capacity.

A. Steady Cache Utilization

The design goal of ILM and Pack is to keep utilization of
IMRS cache stable and at a reasonably high value (e.g. 70%).
Keeping it stable is even more important as it ensures predictive
performance. Unpredictable variations in system performance
due to varying resource utilizations is not something that
customers would like to see.

To ensure a steady cache utilization, we provide a user-
configurable threshold called steady cache utilization
percentage. As the workload increases, so does the cache
utilization whereas the pack sub-system tries to decrease the
utilization. The ILM schemes for transaction processing and
pack sub-system try to keep the cache utilization hovering
around this threshold. In Sec. VIII (c), we provide experimental
evaluation of steady cache utilization in an OLTP setup. This
threshold is used as follows to keep the cache utilization stable.

The background pack threads wake up to pack the data only
when the cache utilization exceeds this threshold. Pack threads
run in one of the following levels based on current IMRS cache
utilization:

- Steady-State Pack: This is the default mode for pack where
rows are packed only if they are cold as defined by ILM rules.

- Aggressive Pack: If the cache utilization exceeds steady
cache utilization and is more than half the difference between
that configured value and the cache size, then the pack sub-
system start packing more aggressively without applying row-

hotness heuristics. In such a case, even hot rows could be
packed to free up memory.

If cache utilization increases while aggressive pack was
happening, server decides to stop storing new rows in the IMRS
until cache utilization drops (as a consequence of pack).
Meanwhile, all operations will be performed on the page-store,
temporarily resulting in perhaps sub-optimal performance,
however, without causing any application outage. This ensures
that the pack sub-system is not over-loaded by incoming newer
data and needs to pack only the existing cold data in the IMRS.

B. Partition-level Relaxed LRU Queues

To quickly locate the cold rows to perform a pack operation,
our system uses a variant of relaxed LRU strategy used in
traditional buffer cache-replacement schemes. As individual
rows are being identified as being cold, the design attempts to
keep the book-keeping overheads of tracking access to rows
low.

Relaxed LRU queues are maintained to track cold rows.
Cold rows are expected to be found at the head of a queue, and
hot rows toward the tail of the queue. Important aspects of such
queues that help to efficiently execute various pack heuristics
are described below.

 Partition level queues: Separate queues for each
partition are maintained as opposed to one queue for all rows in
the database (or in the IMRS, across all tables). We chose per-
partition queues rather than a single LRU queue across all
tables in the IMRS for the following reasons. Individual per-
partition queues better reflect the activity which may vary
across partitions, and over time. Per-partition queues also help
to quickly locate packable-cold data from colder partitions.
Moreover, our overall pack system is driven with the help of
workload analysis on different partition accesses. A single-
queue of rows across all tables runs the risk that a certain row
may appear “cold” relative to all the rows in the IMRS, but is
likely to be a more active row for the small set of rows in the
specific partition the row belongs to. A key distinction between
classical cache-replacement strategy and Pack is that the latter
is intimately tied to operating on a tables’ rows. Cache
replacement may simply evict “cold” rows from the cache, but
Pack, on the other hand, has to collect a bunch of cold rows
from one partition (or table), remove them (logged-delete)
from the IMRS and move them (logged-insert) to the page store.
Partition level queues for cold rows help in consolidating these
operations while packing candidate rows from one partition.
For example, accessing the metadata of a table to pack a set of
rows can be done once for a batch of packable rows. This allows
pack threads to move data to the page store more efficiently for
a single partition than by using a single queue at the database
level, wherein cold rows from different tables could be inter-
mingled.
Multiple queues for each partition: Each partition has
multiple queues based on the operation which brought the rows
into the IMRS. There are separate queues, one each for inserted
rows, migrated rows (rows updated from page-store to IMRS)
and cached rows (rows selected from page-store and cached in
the IMRS). Having separate queues help because hotness

6

characteristics for each of the row types or partitions may be
different. For example, the new_orders table being a heavily-
inserted table ends up with more rows in the inserted rows
queue. This table, being a queue-like table, is more likely to
have newly-inserted rows updated / processed. Older rows that
reside in the page-store are less likely to be updated or scanned,
so the migrated or cached queues, respectively, for such rows
tend to be less useful.

Queue Maintenance offloaded from transactions: IMRS-
GC threads have to process every IMRS row created by a
transaction to reclaim memory from obsolete versions. We
piggy-back on this activity as follows. GC threads insert a
newly created IMRS row(s) at the tail of the ILM-queue. If a
pack thread finds a hot row at the head of the queue, it will not
pack the row but move it to the tail of the queue. This way, hot
rows will be gradually relocated to the tail of the queue,
bubbling up colder rows to the head for further packing. This
gives a behaviour similar to that of LRU and also avoids
performance overheads of constant row shuffling.

This design helps in two ways: (a) Since it is not performed
in a transaction’s execution path, transaction response time is
not affected. (b) As queues are maintained by background
threads, which are far fewer in number as compared to number
of active transactions, any contention to maintain such queues
is very low.

C. Partition-Aware Pack Selection

We expect that in an OLTP-workload the data coldness
depends a lot on table partitions, their sizes, and type of
operations on the partitions. Analysing these patterns provides
information regarding the cold data in the IMRS. Some
examples are mentioned below.

- Number of reuse operation: We call SELECT, UPDATE,
DELETE as operations which could re-use rows which are
bought in the IMRS by a previous operation. A partition having
a lower rate of re-use operation (w.r.t. number of its rows in the
IMRS) has more number of cold rows compared to a partition
having higher reuse rate. For example, history being an insert-
only table has very low reuse rate compared to orders table so
history table would have more cold data to pack.

- Growing vs stable partition: Our design anticipates an
access pattern that in a partition which is constantly growing
some part of data is hot for some time and may not be hot
afterwards. Usually in growing tables, newly inserted data is
more hot, and then cools off after the business activity is
completed. Whereas in small and stable tables, (number of rows
remains mostly static) most of the rows will be equally hot and
may not have a lot of cold rows to pack.

The following techniques ae used to efficiently identify cold
rows based on access patterns to partitions.
 Pack cycle and pack transactions:

The Pack sub-system packs data in time epochs referred to
as a pack cycle. In each pack cycle, the pack sub-system tries
to pack some small percentage of current IMRS cache
utilization, referred to as NumBytesToPack. The idea being that,
due to the transactional workload, if cache utilization is
growing sufficiently to trigger a pack activity, then the pack

sub-system’s goal is to bring down the utilization gradually by
small percentages, and not dramatically. This small percentage
of current cache utilization translates to number of bytes that
need to be packed.

A naïve approach could be to distribute the
NumBytesToPack bytes uniformly across all active partitions.
This has the downside that all or most of the rows from some
small partition (e.g. warehouse table) are unnecessarily packed,
even though they are hot. Our approach is an improved design
over this naïve solution. At the beginning of a pack cycle, this
number of bytes to pack are distributed among active partitions
of IMRS enabled tables based on the current footprint
(memory-usage) of the partitions and their (re)usability in the
IMRS. This process is referred to as apportioning bytes to pack
for each partition for the pack cycle. Cold rows from one
partition are packed by one thread, in smaller pack transactions,
till the target number of bytes apportioned to each partition are
released after packing. Once all target bytes are processed the
current pack cycle finishes and the next pack cycle starts with
latest metrics for memory footprint and re-usability across all
partitions.
 Pack cycle-byte distribution:

Based on the metrics collected, various indexes, as described
below, are computed, which lead to the target number of bytes
to pack value for each partition.

- Usefulness Index (UI): UI is an indicator of how
useful it is (or has been) for storing rows in-memory based on
the re-use of those rows. Usefulness of rows for each partition
ఘܫܷ is determined by considering SELECT, UPDATE,
DELETE operations that happened on the rows stored in-
memory for the partition ρ. More SUD operation means more
usefulness. UI is computed by averaging the usage metrics
across all IMRS-enabled partitions Ρ.

ఘܫܷ =
൫݈ܵ݁ఘ + ఘܷ݀ + ఘ൯݈݁ܦ

∑ ൫݈ܵ݁ఘ + ఘܷ݀ + ఘ൯ఘ∈உ݈݁ܦ

Number of inserts to a partition does not figure in this index
as the usefulness is determined by number of reuses that have
occurred to rows already in an IMRS. For example, in an insert-
only partition, the number of new inserts may be high, but
usefulness index is low if subsequently the inserted rows are
not selected or updated.

- Cache Utilization Index (CUI): CUI is a relative
metric across partitions comparing memory footprint in the
IMRS for different partitions. This is determined by comparing
memory consumption ݏ݁ݐݕܤఘ of partition ρ to cache utilization
by other partitions. The larger partitions being prime candidates
for packing are taxed heavily (i.e. more of their colder rows
may be packed) so as to make more memory available.

ఘܫܷܥ =
ఘݏ݁ݐݕܤ

∑ ఘఘ∈உݏ݁ݐݕܤ

Note, pack sub-system only comes into play when cache
utilization is beyond a configurable threshold. So, in above
expression if the total cache usage (denominator) is still low
(say, < 50%), pack sub-system is not activated. In other words,
the algorithm is sensitive to CUI only when IMRS memory is
used sufficiently.

7

- Packability Index, PI: Based on these two indexes, a
packability index (PI) of a partition ρ is computed as below.
This index gives a relative score for what proportion of a
partitions’ rows in the IMRS could be packed. If a partition has
high cache utilization, then its usefulness index has to also be
higher otherwise its rows are candidates to be packed (i.e. due
to low usefulness index).

ߩܫܲ =
൫ߩܫܷܥ ⁄ߩܫܷ ൯

∑ ൫ߩܫܷܥ ⁄ߩܫܷ ൯ߩ∈Ρ

- Bytes to Pack: Finally, the bytes to pack
(PACK_BYTES) from each partition ρ during a pack cycle are
determined by distributing the total number of bytes to pack
 in a pack cycle across all the partitions Ρ ݇ܿܽܲܶݏ݁ݐݕܤ݉ݑܰ
in the proportion of their packability index.

ఘܵܧܻܶܤ_ܭܥܣܲ = ݇ܿܽܲܶݏ݁ݐݕܤ݉ݑܰ × ௧ܫܲ

D. Determining Row Hotness

The Pack sub-system tries to keep the most recently accessed
rows in memory. It uses a timestamp based filtering mechanism
to retain rows that are accessed recently as well as frequently in
the IMRS. Timestamp filtering mechanism tries to filter rows
based on most recent access to rows in the IMRS. Both
SELECT and UPDATE statements are counted as accesses.
(Deletes are not interesting for this technique as this operation
removes the row from the IMRS.) Server internally maintains
and learns the timestamp filter based on the load created on the
IMRS cache by current workload.

1) Applying Timestamp Filter (TSF)

In a running system, this design attempts to keep utilization
of in-memory cache stable and at a higher value (e.g. 70%). We
call this percentage as “steady cache utilization” percentage.
We use this steady percentage to apply TSF for in-memory
storage.

Time Stamp Filter (Ʈ) approximates the number of
transactions which would cause memory utilization in the in-
memory cache to increase by a small percentage of current
cache utilization. From that number, we extrapolate the number
of transactions which would cause cache utilization to increase
by steady cache utilization percentage Ρ. If memory utilization
has already reached this steady level, then pack needs to pack
rows. With recent access being the parameter for determining
hotness, a row which is being operated by any of the last Ʈ
transactions should not be packed as it is a hot row and the
IMRS probably has more cold rows to pack.

Databases usually maintain an atomic counter which is
incremented when transaction in the database completes; this is
called as database commit timestamp. Thus, during pack
operation, a row is considered cold if its last access timestamp
is greater than commit timestamp by at least Ʈ value.

ሻߛሺܦܮܱܥ_ܵܫ_ܹܱܴ ≝ ܫܯܯܱܥ _ܶܵሺܾ݀ሻ − ሻߛሺܵܶ_ܵܵܧܥܥܣ > ߬

Learning/tuning TSF delta is performed heuristically by
monitoring how many transactions in the workload cause
memory usage to increase by small percentage (e.g. 1-5%).
This learning is performed in background as transactions
complete in the database.

- When the tuning-cycle starts, current cache utilization
) and current commit-ts is recorded (݁ݖ݅ܵ) ଵܶ).

- During a tuning-cycle, when memory utilization increases
by the required small percentage (ߜ), current commit-ts is
recorded (ଶܶ). TSF (Ʈ) is then computed as

߬ =
൫ሺ ଶܶ − ଵܶሻ×Ρ൯

ߜ

To handle the change in workload, system re-learns the TSF
again after some time.

2) Partition Awareness for TSF

We consider recency as well as frequency of accesses to data
while determining if a row is cold/hot to pack.
 Recency of access:

The above learnt timestamp filter is applied during the pack
operation. If a pack operation finds the difference between the
current database timestamp and oldest modification timestamp
of the row is less than the timestamp filter, (i.e. the row was
updated sometime in a window given by the timestamp filter)
then such rows are considered hot and are skipped for packing.
This application of timestamp filter considers recency of access
to the data rows.
 Frequency of access:

However, we don’t apply the timestamp filter for all the
partitions as we know some of the partitions don’t have access
pattern for very high row re-use. For such partitions, discarding
rows to pack is not desirable as it wastes the processing cost
without much gains. In fact, our pack cycle mechanism
prioritizes rows from such partitions to be packed first even if
they were inserted or updated in the IMRS later than rows in
some other high-reuse partitions.

We don't apply timestamp filter to determine row hotness
during pack if the reuse rate is very low for a partition. This
technique ensures that the frequency of access to the data rows
is considered.

ఘܧܶܣܴ_ܧܷܵܧܴ =
݈ܵ݁ఘ + ఘܷ݀ + ఘ݈݁ܦ

ఘݏݓܴ݉ݑܰ

Consider for example, due to page contention seen on the
page-store, ILM-techniques decide to perform insert on the
history table in the IMRS. However, this table has very low re-
use rate so it is desirable to pack early from this partition and
make space available for newer data. In fact, the Pack cycle
heuristics make sure that rows from this table are scheduled
aggressively for packing. Even though some of these rows
could be very recently inserted in the IMRS, due to low reuse
rate they would get packed as timestamp filter is not applied on
them.

VII. PACK-ILM INTEGRATION WITH CONCURRENT ISUDS

ILM methods are woven through data processing to
seamlessly manage data movement between the in-memory and
the page store.

A. Granularity of Data Movement

Individual rows can be moved between the page store and
the IMRS. This allows fine tuning of hot data in memory. Data
movement from the page store to the IMRS is done by ISUDs

8

as part of the statement execution. Data movement from IMRS
to the page store is done by pack sub-system in the background.

B. Non-blocking Online Data Movement

Data movement from the IMRS to the page store and vice
versa is done in an online manner. DMLs move data to the
IMRS while holding row level locks. This does not prevent
other DMLs or pack threads from moving other rows from one
store to another. Scanners are transparently redirected to the
appropriate store. Scanners can be active on a row while there
is data movement between stores by DMLs or pack. Scanners
which need consistent data (isolation level read committed and
above) handle this by looking up the row in the IMRS after
acquiring a lock. Since data movement needs locks on the rows,
scanners can safely access the row. Scanners which do not take
row level locks may access stale copy in IMRS or page store.
Physical consistency of IMRS data seen by such scanners is
provided by an internal technique called statement registration
which blocks garbage collection until the scanner completes its
work. Pack threads request a conditional lock on rows. If a row-
lock cannot be granted, row is skipped for pack. This prevents
active DMLs from blocking pack. Each pack transaction packs
only a small number of rows and commits frequently. This
prevents DMLs being blocked for a long time by rows which
are already locked by pack.

VIII. EXPERIMENTS

We demonstrate the benefits of ILM classification and hot /
cold data movement through an OLTP benchmark based on the
TPC-C benchmark [17]. Experiments were run on a machine
with Intel(R) Xeon(R) CPU E7-4880 v2 @ 2.50GHz processor
having 4 sockets / 60 cores / 120 logical CPU system and 1 TB
RAM, SSD storage for data and log devices. Unless otherwise
specified, experiments were done using scale factor of 240
warehouses for TPCC schema, 200 concurrent users, and SAP
ASE with 64 threads.

In many of our experiments, we compare two setups for
evaluation of ILM strategies.
 ILM_OFF: Does not use any of the ILM heuristics

mentioned in the paper. In this run, all accessed data is
fully memory-resident in the IMRS through the workload.
All the ISUD operations store data in the IMRS. There is
no background pack activity happening to move data to
cold store and cache utilization keeps on increasing. This
is akin to an unlimited IMRS size. Practically we
configured 150 GB of IMRS cache.

 ILM_ON: Uses all the ILM heuristics mentioned in the
paper to keep only hot data in the IMRS. Pack sub-system
is configured to use 12 pack threads. The design goal of
ILM_ON is to maintain stable cache utilization.

Our experiments focus on end to end throughput,
transactions per minute (TPM), which is the metric
conventionally used for this benchmark. By our design, as
online transactions are unaffected by ILM / Pack, we do not
anticipate any increase in transaction commit-latency. However,
this has not been specifically measured, and is something that
can be investigated in future work.

A. TPCC Tables and Workload Pattern

Our experiments were run on tables from the TPCC schema,
so for quick reference and understanding of experiment data,
this section provide typical workload pattern observed on these
tables in TPCC benchmark run.

Table Name Workload Pattern

warehouse,
district

Small, medium-sized table respectively with
high scan and update rates

stock Large table with frequent update rates
item Medium-sized read only table

history Insert Only table

order_line, orders Large tables. Heavy inserts, very low
scans/update

customer Medium-sized table. Heavy updates and
some selects

new_orders Both inserts and deletes (e.g. queue table)

TABLE 1: PROFILE OF TABLES SEEN IN THE TPC-C SCHEMA

B. Benefits of ILM Strategies

In this section, we capture the benefits of ILM strategies with
help of the following parameters comparing transactions per
minute (TPM).

 Relative TPM w.r.t. ILM_OFF: This parameter
compares TPM with ILM_ON v/s ILM_OFF strategy.

 % operations in the IMRS (Hit rate): This parameter
captures percentage of all operations done in the
IMRS with ILM_ON. For ILM_OFF setup this
implies hit rate of 100%, as data is fully cached.

 % reduction in cache utilization: This parameter
measures how much less cache we could work with
when ILM is on v/s ever increasing cache usage when
ILM is off.

Fig. 1. Benefits of ILM strategies comparing relative throughput metrics

Fig. 1 shows the benefits of ILM by measuring the above
parameters between the two schemes. The TPM gain is as
compared to a baseline TPCC run on the page-store with the
database fully-cached in the buffer cache. The TPM gain with
ILM_ON is within +/- 10 % of what is observed in ILM_OFF
setting (solid blue line in above figure). Note that ILM_OFF
setting keeps all accessed data in memory, whereas ILM_ON
setup only keeps hot data in memory. After a 30-minute run,
the ILM_ON setup is able to operate with 60% of cache used

9

in the ILM_OFF setup (dotted blue line in figure) even while
keeping TPM largely unaffected. Even with this reduced cache
usage we observed 80% hit rate with ILM_ON, as shown by
the dashed blue line.

This shows that using ILM strategies, we can configure a
system with a suitably smaller IMRS size and can run the
workload in a stable manner without affecting performance.

C. Cache Utilization

This experiment demonstrates effectiveness of ILM
strategies with respect to reducing cache requirement. Fig. 2
shows cache utilization as the benchmark runs progress. For
ILM_OFF setup (effectively, infinite memory), as expected
cache utilization keeps on increasing as the benchmark run
progresses. With ILM_ON, cache utilization remains stable at
around 44 GB. On-going product enhancements further reduce
the memory used for in-memory rows by shrinking size of core
structures and improved memory allocation. These
enhancements are not seen in these experiments but are
available in recent editions of the product.

Fig. 2. Cache utilization comparison between ILM ON and OFF schemes

- Partition Level Cache Footprint
In this section, we show the per-table cache footprint

between the two strategies. Fig. 3 shows how the IMRS cache
footprint increases for ILM_OFF setup for each table as the
benchmark run progresses. It can be seen that for most tables
cache footprint is growing. This is expected behaviour with
ILM_OFF setting as new insert / update / delete commands
continue to bring in new data to the IMRS.

Fig. 3. Memory usage footprint of various tables with ILM_OFF

In comparison, Fig. 4 shows how the IMRS cache footprint
changes for ILM_ON setup for each table as the benchmark run
progresses Note that cache utilization is mostly stable for all the
tables as the benchmark run progresses. This corroborates data

in Figure 2, which shows that cache utilization is stable with
ILM_ON strategy.

Fig. 4. Memory usage footprint of various tables with ILM_ON

Note that the cache footprint for small, hot tables such as
district and warehouse tables, remains the same with both
ILM_OFF and ILM_ON setups. This demonstrates that hot
tables continue to remain in the IMRS even with lower cache
utilization using ILM heuristics. Lower cache utilization is
achieved by packing cold data to keep cache utilization steady.
Comparing Fig. 3 and Fig. 4, we can see that most of the
reduction in footprint comes from large tables like order_line
and orders (both have high insert rates with low scans), and the
history (insert only) tables which are cold. IMRS cache
utilization for these different table types is in-line with our
design expectations.

D. Pack Sub-system

Fig. 5 shows the impact of pack in ILM_ON setup. Pack is a
logged data movement background operation affecting both
transaction logs and stores. It is not expected to affect TPMs as
it is performed by background threads operating on cold data.
There is no pack in ILM_OFF setup. In ILM_ON setup, as
expected, data packed in MBs increases as the run progresses.
However, there is minimal impact on TPM and it remains
within 10% of the TPM for ILM_OFF run (used as a reference
TPM). This shows that even with the pack processing and
logging overhead in both the logs, pack is a low overhead
operation, which also helps to keep cache utilization constant.

Fig. 5. Normalized TpmC, comparing Pack overheads with both strategies

From Fig. 3, with ILM_OFF the inflow rate of new data to
the IMRS is about 2.5 GB / min. Correspondingly the outflow

10

rate of cold data packed from Fig. 5 is also about the same,
thereby ensuring steady cache utilization with ILM_OFF, as
observed in Fig. 3.

1) Pack Cycle Distribution

As discussed in section VI, the pack sub-system assigns
more “tax” to fatter cold partitions. This ILM_ON experiment
demonstrates how pack adjusts number of rows to be packed
based on re-use counts observed for rows in the IMRS and
cache utilization (footprint) for each table.

Fig. 6. Average per-row re-use counts across different tables

Fig. 6 shows the average re-use of rows in the IMRS for each
table in the experiment over the 30-minute period. Since data
access in TPC-C is skewed, logarithmic scale is used. For
example, in the 30-minute period, on an average every row in
the warehouse table was accessed 227K times. Cache
footprints for various tables can be seen in Fig. 3. As expected
by our design assumptions modelling OLTP workloads, small
tables like warehouse and district show a very high cache re-
use rate. Large tables like order_line show very little re-use but
a larger in-memory footprint of active data. Medium-sized
tables like item and customer show reasonable re-use rates
with some limited cache footprint.

Fig. 7 Packed rows distribution across all tables, over 4 runs

Fig. 7 shows the metrics on number of rows packed across
tables, aggregated over 4 runs. The warehouse table has high
reuse rate (227400), and low cache footprint (71 Kb). Hence
only 580 rows were selected for pack. Note that as this data is
aggregated over 4 runs, the number of rows selected for pack
can be more than number of rows in table. Contrastingly, the
order_line table has high cache utilization (~19GB) and low
re-use rate (0.93), hence large number of rows (26M) are
selected for pack. Most of the rows for pack are selected from

order_line, orders, history, and new_orders tables, all of
which have high cache utilization and low re-use. This also
explains their footprint remaining the same despite new DMLs
on these tables.

2) Partition Level LRU Queues Distribution

This ILM_ON experiment describes how timestamp filtering
is working in the benchmark runs and also explains how the use
of partition level queues help to identify cold rows during pack.

Fig. 8 shows the percentage of cold rows in every 10% of
rows from the head of the partition level queue for tables in the
benchmark. Pack threads remove rows to pack from head of the
queue and so having more cold rows at the head of the queue is
efficient for the pack sub-system.

Fig. 8. Percentage of cold rows in every 10% of rows in ILM queues

For tables that are frequently accessed, like the warehouse,
district and stock tables, nearly every range has equally hot
rows. For other tables like history and order_line, we see a
sheer drop in the percentage of hot rows beyond the initial 2
bands of rows, which is as expected by our designs.

3) TSF Tuning:

From Fig. 8 we can see that TSF is qualifying some rows as
hot and some as cold. For example, for the history and
order_line tables all rows up to 20% from the head of the queue
are cold. As you near the tail of the queue for these tables, the
percentage of rows that are cold drops to about 40-50%. These
are large tables with many cold rows. Warehouse and district
are small tables with all rows as hot. This matches with general
understanding of the benchmark workload behaviour on the
table. This shows that TSF technique is able to correctly model
hotness patterns.

4) Partition Level Queues:

The Fig. 8 also partially justifies use of partition level (or,
table level) queues, as opposed to a database-wide queue.
Different tables and different partitions of the same table in the
workload have different characteristics with respect to hot /
cold rows. If one database level queue was used, then we
anticipate that cold rows could occur anywhere in the queue and
locating them during pack would have been difficult.

5) Well-behaved Queues:

Our techniques do not need any special processing to shuffle
cold rows from the start of the queue due to transactions

11

operating on such rows. We only move hot rows to the tail of
the queue when pack discards such a row upon finding it hot.
Due to partition level queues, we observed that the queues are
well behaved with majority of cold data at head of the queue
and hot data at end of the queue.

6) Steady Cache Utilization

To study the impact of the steady cache utilization
threshold, we re-ran the TPCC experiment with the same setup
as described earlier, using ILM_ON. Fig. 9 shows observed
highest cache utilization for different values of this threshold.
It can be seen that actual value of highest cache utilization
follows value of configuration parameter. This shows that pack
and ILM mechanisms are able to balance the demands on the
IMRS to maintain cache utilization.

Fig. 9 HWM Cache Utilization for different values of steady cache threshold

For the same experiment, we explored the impact on overall
normalized throughput and the work done by Pack sub-system.

Fig. 10. Normalized ILM / Pack Parameters for steady cache utilization

Fig. 10 shows the normalized values of various parameters,
with respect to the maximum value for each metric across
different steady cache utilization thresholds studied. For
example, the maximum TPM delivered was observed at the
steady cache utilization threshold of 70%.
 NumRowsPacked shows that at lower steady cache

utilization values, as expected, more data is packed.
 NumRowsSkipped is a metric for the number of rows

skipped by Pack when they were found to be hot. This
metric is gradually increasing at a slow rate. This is
because at higher steady cache utilization, more rows are
considered hot and are, therefore, skipped by pack. This
also shows that TSF tuning is adapting well to the changing
steady cache utilization.

 The TPM remain mostly unaffected because hot data is still
retained at lower values of steady cache utilization. These
values also show that background pack is not an expensive
operation with reasonably configured cache size.

The results from Figs. 9 and 10 show that with ILM_ON,
across different steady cache utilization thresholds, our system

is able to maintain IMRS cache-usage reasonably around this
threshold, while delivering stable performance gains.

IX. RELATED WORK

Performance of database systems constrained by memory
has been studied previously, but with significant differences
from our work. In [16], Graefe et al present an architecture that
optimizes buffer pool designs to support “big data” workloads
which cannot fit in available memory sizes. This work manages
buffer pool usage using pointer swizzling, but does not address
areas considered by this work around contention issues arising
from page-oriented storage and row-level in-memory
processing.

In [17], techniques referred to as Anti-Caching; i.e. moving
cold data from in-memory to disk storage are presented as an
extensible alternative to fully in-memory databases. The anti-
caching aspects of this work is close to our design however, the
storage model starts initially in-memory and then pushes cold
data to disk-storage. Access to cold data that was evicted (i.e.
access from page-store) results in rolling back certain
transactions while the system retrieves relevant tuples in the
background. This approach seems quite non-user-friendly. Our
scheme has no such issues with application outages. Other
high-level design choices such as which tables / partitions to
consider for row-eviction, the number of cold rows that will be
evicted etc., are similar to our work, but the actual logic is
different at lower-levels.

Hekaton [4] is a Microsoft SQL Server's new DBMS engine
optimized for in-memory processing of OLTP workloads.
Hekaton calls tables which are stored in-memory as "Memory
optimized" tables which need to be entirely memory resident.
This is different from our approach where a table is not required
to be fully in-memory, may have its data across page store and
the IMRS, and could end up being fully memory-resident if the
workload so requires.

Siberia [5] and [9] investigate cold data classification based
on data access capture and offline analysis of access log.
Siberia is prototyped on Hekaton and [9] is prototyped on
VoltDB [11]. [5] and [9] investigate efficient estimation
techniques based on log of record accesses. Estimation is done
offline using log based on exponential smoothing based
algorithms and cold data is moved to cold store (Siberia
extensions for cold data movement are described in [10].) As
an objective, Siberia estimates K hot rows, where hotness is
identified by record access logs. Our work is fully integrated
into the SAP ASE generally-available product. We run
classification algorithm online using scalable engine level
runtime counters. Our work internally adjusts number of hot
rows that can be stored in-memory based on resource utilization
and data sizes. No additional log collection is required by user.
Partition tuning is performed by a set of background threads
with configurable periodic cycle. Temperature classification is
available in Siberia [5] and [9] at a row level. Our work also
takes into account patterns where rows in a partition are
accessed in similar manner. For example, in a table partitioned
by month, partitions for recent months are more likely to be hot.

12

In addition, in our work selects can also bring rows to the IMRS,
which is not a feature supported in these alternate schemes.

HyPer [7] and HYRISE [8] propose hybrid database systems
capable of handling OLTP and OLAP workload. These systems
require the whole database to be in memory. Again, the BTrim
architecture imposes no such restrictions. Hyper advocates
partitioning approach where data is partitioned such that most
transactions need to access data only from a single partition.
HYRISE auto-partitions tables based on type of access. Both
these systems do not handle hot / cold data classification
problem because of their full in-memory nature.

Funke et.al. [6] present an access based hot/cold data
classification scheme for Hyper. Cold data is stored in a
compressed format. Classification is at a page granularity in [7],
where page stores a subset of data in a column. BTrim
architecture stores data at a row granularity, and individual
rows are classified as hot or cold. Classification at a row
granularity potentially allows more data if only a few rows on
a page are hot. In HyPer, classification is done using hardware
assisted component called “Access observer”. BTrim uses
platform independent, lightweight scalable partition level
metrics to determine re-use for classification.

Per our understanding, there is no other commercially
available DBMS engine that tightly integrates cold / hot data
classification and packing (anti-caching) seamlessly in a single
product. We believe the availability of this work is itself a
significant differentiator and we look forward to performance
details from customer implementations.

X. CONCLUSIONS

In this paper, we presented various ILM-schemes to retain
only the hot data in memory and store the colder data in
traditional page-store. Our experiments show that, with the help
of our ILM-techniques, we can get the performance gains of in-
memory processing without requiring that all data be in-
memory. Backed by ILM-strategies, the tiered in-memory
storage was able to achieve performance close to a system
where all the data was stored in memory.

The active working dataset often remains stable and our
experiments show that we are able to deliver constant
performance gains with stable cache utilization in the system.
The stable cache utilization is one of the important parameters
for using this technology in the field.

To ensure that the in-memory cache is used to store only hot
data, it is important to have ILM-strategies for both (a)
determining data hotness while storing data into in-memory
cache (b) determining data coldness while packing/evicting
data from the in-memory cache. The novel ILM-techniques
presented in this paper are all driven by workload-
characteristics and make use of partition-specific workload
patterns to easily and efficiently determine the data hotness and
coldness. Our experiments show that our techniques perform
well in a representative OLTP workload to successfully identify
hot and cold data. We are also looking to provide easy-to-use
user configurations drawing on ILM rules to specify, for
instance, that a small table be fully memory-resident,
overriding ILM rules in specific cases. This will provide

features such as fully in-memory tables and “pre-warmed”
IMRS caches.

ACKNOWLEDGMENT

We would like to express our sincere appreciation to many
other members of the ASE Product development and Server
Performance Engineering teams who have contributed to
developing and evaluating various techniques mentioned in this
paper. We also acknowledge the feedback and internal reviews
of this work received from personal mentors of authors.

REFERENCES
[1] SAP ASE Product Documentation, What’s New in SAP ASE 1602, dd.

Dec. 2016.
[2] SAP ASE Whitepaper, www.sap.com, What’s New in SAP Adaptive

Server Enterprise 16.0 SP02, MemScale Option, dd. 2015
[3] SAP ASE Product Documentation on In-memory row storage:

https://help.sap.com/viewer/a1237e466dba417da6f0e5504cf9fb83/16.0
.3.0/en-US/4621155144774163837984cbe3fe0656.html

[4] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013.
Hekaton: SQL server's memory-optimized OLTP engine. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data (SIGMOD '13). ACM, New York, NY, USA, 1243-1254.

[5] Radu Stoica, Justin J. Levandoski, and Per-Ake Larson. 2013.
Identifying hot and cold data in main-memory databases. In Proceedings
of the 2013 IEEE International Conference on Data Engineering (ICDE
2013) (ICDE '13). IEEE Computer Society, Washington, DC, USA, 26-
37. DOI: http://dx.doi.org/10.1109/ICDE.2013.6544811

[6] Florian Funke, Alfons Kemper, and Thomas Neumann. 2012.
Compacting transactional data in hybrid OLTP&OLAP databases. Proc.
VLDB Endow. 5, 11 (July 2012), 1424-1435. DOI:
http://dx.doi.org/10.14778/2350229.2350258

[7] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid
OLTP&OLAP main memory database system based on virtual memory
snapshots. In Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering (ICDE '11). IEEE Computer Society,
Washington, DC, USA, 195-206. DOI:
http://dx.doi.org/10.1109/ICDE.2011.5767867

[8] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe
Cudre-Mauroux, and Samuel Madden. 2010. HYRISE: a main memory
hybrid storage engine. Proc. VLDB Endow. 4, 2 (November 2010), 105-
116. DOI=http://dx.doi.org/10.14778/1921071.1921077

[9] Radu Stoica and Anastasia Ailamaki. 2013. Enabling efficient OS
paging for main-memory OLTP databases. In Proceedings of the Ninth
International Workshop on Data Management on New Hardware
(DaMoN '13). ACM, New York, NY, USA, , Article 7 , 7 pages.
DOI=http://dx.doi.org/10.1145/2485278.2485285

[10] Ahmed Eldawy, Justin Levandoski, and Per-Åke Larson. 2014.
Trekking through Siberia: managing cold data in a memory-optimized
database. Proc. VLDB Endow. 7, 11 (July 2014), 931-942.
DOI=http://dx.doi.org/10.14778/2732967.2732968

[11] M. Stonebraker and A. Weisberg. The VoltDB Main Memory DBMS.
IEEE Data Engineering Bulletin, 36(2):21--27, 2013.

[12] Transaction Processing Performance Council TPC-C Standard
Specification:. http://www.tpc.org/tpcc/spec/tpcc_current.pdf .

[13] Harizopoulos, S., Abadi, Daniel J., Madden, Samuel, Stonebrake,
Michael, OLTP Through the Looking Glass, and What we Found There,
SIGMOD 2008, 981-992

[14] Stonebraker M., Madden S., Abadi D.J et al. The End of an Architectural
Era (It’s time for a complete rewrite), VLDB 2007, pp. 1150-1160

[15] Plattner H., Zeier A., In-Memory Data Management: An Inflection Point
for the Enterprise Applications, Springer publication, 2011

[16] G. Graefe, et al’, In-Memory Performance for Big Data, Proceedings of
the VLDB Endowment, Vol. 8, No. 1; pp. 37-48, 2014

[17] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, S. Zdonik, Anti-Caching:
A new approach to Database Management System Architecture,
Proceedings of the VLDB Endowment, Vol 6. No. 14, pp. 1942-1953,
2013.

