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Abstract— The last decade has witnessed an explosive growth 

in database engines optimized for main memory based execution.  
However, the requirement to store all the data in-memory makes 
such processing commercially costly and unviable for very large 
databases. In this paper, we present novel techniques optimized 
for transactional workloads where only a small portion of the 
entire database is “hot” and needs to be in-memory. The SAP ASE 
hybrid database engine delivers high-performance transaction 
processing transparently on tiered storage consisting of 
traditional page-oriented disk based storage, for cold data, and in-
memory row storage for fast processing. 

Our techniques make storage choice for the rows based on 
access patterns of the OLTP workload. This is done by monitoring 
and analysing the workload running in the system with minimal 
impact to the transaction performance. The techniques also adapt 
to the workload to alter storage choices for the data, which is 
completely transparent to the application and provides continuous 
data access. The storage choices are not made at gross table or 
partition level but made at the level of individual row and type of 
DML operation. 

Our result show that these techniques help reduce the memory 
footprint by a large margin in OLTP workload even while 
providing performance parity with a setup where all data is stored 
in-memory. 

I. INTRODUCTION 

Traditionally database system store data on disk, usually in 
a page-oriented layout, and use various caching techniques to 
keep important pages in the buffer cache for efficient 
processing. Many in-memory database engines promise 
improved performance and often require that the entire 
database be in-memory, under the premise of availability of 
cheaper memory [15]. However, we argue that, for very large 
databases, keeping all the data in-memory may be 
commercially unviable. Moreover, in transactional systems, we 
typically see only some small portion of the database to be 
active, or “hot” during some period of activity. Thus, retaining 
large unused portions of the database in-memory may 
potentially be a wasteful use of premium memory resource.  

The Business Transactions In-Memory (BTrim) architecture 
of SAP ASE [3] is a hybrid storage model across traditional 
page-oriented disk-storage and row-oriented in-memory 
storage. This allows storing some part of the data (hot data) 
from one or more tables in the In-Memory Row Store (aka 
IMRS) and the remaining bulk of the data (warm / cold data) is 
stored in a traditional disk based store (aka page-store). Just as 
the buffer cache is used to hold the working set of data pages in 
the cache, the IMRS is used to store in-memory “hot” rows, in 
a row-oriented layout. The IMRS acts as a performance 
accelerator on top of the buffer cache, and is both a store (for 
newly inserted or updated rows) and a cache (for frequently 

accessed hot rows). The BTrim engine supports full ACID-
compliant transaction processing to the data independent of its 
storage without requiring any application changes. For example, 
a single statement may process (select or update) hot data in the 
IMRS, and may also process cold data on the page-store. 
Alternately, a statement may migrate data from the page-store 
to the IMRS if it finds the data as hot. Subsequent access to 
such hot data continues in the IMRS.  

The hot data in the IMRS may become warm / cold over time 
and is moved back to the page-store to make IMRS memory 
available for newer hot data. This data-flow is referred to as 
Information Life Cycle Management (ILM). Typically, this 
data-ageing is performed across different data storage tiers. 
With our ILM-techniques, we achieve row-level data ageing 
which is tightly integrated in the core database engine. 

We design for the data and access patterns seen in OLTP 
workloads under the assumption that not all data is important 
enough to be kept in-memory all the time. The goal of our ILM-
techniques is to optimally use available memory for hot rows, 
thereby reducing the memory requirement for the database. Our 
aim is to deliver performance gains comparable to what can be 
achieved with a fully memory-resident database. 

The rest of the paper is organized as follows. Section II 
describes at a high-level the hybrid storage architecture. This 
lays the background for how the temperature-aware data 
management is integrated inside a commercial DBMS engine. 
In section III, we present our design objectives and motivation 
behind this work. Different run-time parameters affecting our 
design choices are discussed. In section IV we discuss the 
techniques used for efficiently storing hot data in-memory. 
There are two significant contributions. Section V presents one 
core contribution of our work, which is the support for auto 
IMRS partition tuning. In section VI, we present the other 
significant contribution of our work, which are the mechanisms 
to efficiently identify cold data in the IMRS and re-locate (i.e. 
Pack) such data back to the page-store, without adversely 
affecting run-time performance. In section VII, we discuss how 
these Pack-ILM techniques are organically integrated with 
concurrent DMLs. Section VIII discusses some experimental 
evaluation of this work using OLTP benchmarks based on the 
TPC-C benchmark. Related work is discussed in section IX 
followed by our conclusions. 

II. BTRIM ARCHITECTURE 

The BTrim architecture is a deeply integrated extension to 
the existing store-and-access layers of the SAP ASE DBMS 
engine [1][2], offering high-performance access to in-memory 
“hot” data rows.  It extends the capabilities of the existing 
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engine to leverage large memory systems running on multi-core 
machines, while maintaining full compatibility for existing 
databases and T-SQL constructs. The new components of the 
architecture are designed to co-exist with and augment existing 
server sub-systems (like the buffer cache and logging sub-
system) and are designed to use algorithms and techniques that 
offer superior multi-core scalability and high concurrency. 

Figure 1 shows the salient components of the new 
architecture and how data is organized and accessed. 
 

 
Fig. 1. BTrim architecture for In-Memory Transaction Processing 

 
Traditional disk-based page-oriented storage is provided and 

data is read into the buffer cache (green shaded box). This data 
is referred to as page-store data. Periodically, hot data may be 
migrated from the page-store (buffer-cache) to the IMRS (red 
shaded box). Once migrated to the IMRS, the buffers holding 
the page-store image of the data can be recycled for other uses. 
There is no double-buffering of rows beyond the initial copy 
created in the IMRS due to migration. 

New inserts go directly to the IMRS without any footprint in 
the page-store. Over-time, cold data is harvested from the 
IMRS and moved back to the buffer-cache, through an 
operation referred to as Pack. At that time, any data that was 
first inserted to the IMRS finds a location in the page-store.  

Some or all the tables in a database can be altered to use the 
IMRS for improved performance, and such tables are referred 
to as IMRS-enabled tables. All updates to in-memory rows are 
performed using in-memory versioning, a scheme that is also 
used to support time-stamp based snapshot isolation for IMRS-
enabled tables. Over time, only some part of a table may be in-
memory. It is not necessary that a table marked for in-memory 
storage needs to have all its data in-memory. In Figure 1, the 
arrows indicating movement of hot data to the IMRS and of 
cold data to the buffer cache imply that IMRS-enabled tables 
can straddle the buffer cache and the IMRS. Access methods 
transparently locate the row from one of the two stores using 
internal scan methods. 

Page-based BTree indexes are enhanced to transparently 
scan rows either in the page-store or in the IMRS. Index access 
goes through an in-memory lookup table, the RID-Map table 
(yellow shaded box), to locate the row either in the IMRS or in 
the buffer cache. Table-specific non-logged, in-memory hash-

indexes are built on top of lock-free hash tables. Hash indexes 
span only in-memory rows and provide a fast-path performance 
accelerator under unique BTree indexes.  

SQL statements and transactions may access tables or data 
that is in the page-store or in the IMRS, without any restrictions. 
Changes to page-store rows are logged in the (existing) 
transaction log labelled as syslogs. Changes to in-memory rows 
are made durable by logging in a (new) counterpart log, 
labelled as sysimrslogs above. Both logs are disk-based, and 
can be placed on SSDs for faster logging performance. 

For the page-store, traditional data checkpoint based redo-
undo recovery is performed. However, for the data in the  IMRS, 
checkpoint does not flush any data to disk. All the IMRS data 
is recovered by doing a redo-only recovery of sysimrslogs. The 
system recovers both transaction logs independently with some 
lock-step ordering of recovery phases, to ensure a consistent 
database post-recovery.  

Several new sub-systems are added to the product to 
efficiently use IMRS memory for hot data, without causing 
application outages. ILM strategies are woven through the 
access methods to choose whether data is stored in the IMRS 
or in the page store. Multi-threaded, non-blocking Garbage 
collection (IMRS-GC) is deployed to efficiently reclaim 
memory from older versions without affecting transaction 
performance. Pack is a new sub-system that, in cooperation 
with the memory manager and based on ILM-rules, efficiently 
relocates cold (transactionally inactive) data out of the IMRS to 
the page-store (buffer cache). Pack and ILM work together to 
guarantee stable memory utilization and enhanced performance 
for OLTP activity 

A key sub-system supporting the IMRS is a high-
performance fragment-memory manager which is highly 
optimized for best-fit low-latency memory allocation and 
reclamation on multiple cores.  

III. DESIGN OBJECTIVES AND MOTIVATION 

To motivate our design choices, we use the set of tables in 
the TPCC schema [12] as a reference workload in our examples. 
The set of tables in this schema have access patterns 
commonly-seen in typical OLTP applications such as update-
heavy table, insert-only table, read-mostly / read-only lookup 
table, tables of different sizes and so on. Table names from the 
TPCC schema are identified by use of bold typeface. 

ILM-techniques in the BTrim architecture address two 
important requirements: 

1. Identify data as hot which can be stored in the IMRS 
2. Identify and remove cold data from the IMRS 
Our schemes to address these requirements largely rely on 

the following aspects of access patterns to decide which data to 
store and retain in-memory. 

Frequency of data access: It is important to only keep the 
often-used data in memory and either to not store in the IMRS 
or move infrequently accessed data from the IMRS to the page-
store.  

Contention on the page-store: Traditional page-store are 
often seen to be non-performant [13][14] due to factors such as 
page contention, latch contention, etc. IMRS uses a row-
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oriented architecture rather than page-oriented, and completely 
avoids buffer cache access, so it does not have any page-level 
contention issues. 

Our solutions identify potential contention conditions on the 
page-store and decide to perform such operations in-memory 
instead of in the page-store.  

Type of operation: Our techniques distinguish between the 
type of operation – INSERT, SELECT, UPDATE, DELETE 
(ISUD) – to decide whether to store the data accessed by those 
operations in-memory. Some operations access and create hot 
data while other perform just an ad-hoc access to the data. Our 
techniques distinguish between various types of such operation 
using runtime statistics gathered from the workload and make 
choices on a per-row basis to store data in-memory. 

Granularity of storage decision: This is an important 
aspect as all the data in a database, in a table or partition need 
not be always hot or cold. Making a choice, say, to store all the 
data in-memory for an entire partition, or for the whole table, 
can lead to excessive memory requirements especially for very 
large tables. Our techniques perform storage decision during 
every operation on the row to decide if it needs to be stored in 
memory for faster access. The storage choices are optimized to 
avoid performance impact in different ways. 

In transactional workloads, oftentimes there are partitions 
which can be considered either completely hot or completely 
cold, so we also make storage choice decisions at the partition 
(and operation) level. For example, the warehouse table is a 
small heavily-updated table and can always be in-memory 
whereas the history table is an insert-only but never accessed 
table so need not be in-memory. Such decisions are made 
internally in our system. 

The main objective of ILM is to keep cache utilization stable 
while retaining mostly hot rows in memory to provide benefits 
of fast performance. Other objectives are: 
 Application compatibility: A major requirement for ILM 

was to provide application compatibility. Use of ILM / IMRS 
should not require major application re-writes or lead to 
application / data outages.  

  Minimal tuning for user input: One common method used 
for ILM by in-memory systems such as Hekaton [4] is to 
accept input from users about placement of rows. Our 
experience working with enterprise grade systems has 
revealed that it is hard for users to know which tables are 
suited for in-memory processing amongst potentially 
thousands of tables used by the application. ILM should make 
decisions on row storage requiring as little input from users 
as possible. 

  Respond to changing workloads: Applications often cause 
changing workloads on some tables. If the system can auto-
tune to these changing patterns, then user intervention is not 
required. 

  Low transaction impact: ILM processing should have low 
transaction impact on user transactions. Any additional 
processing should be performed in the background with little 
or no blocking for user transactions. 

  OLTP characteristic tuning: ILM processing takes into 
account table profiles typically seen in traditional OLTP 

workloads. We anticipate that for most OLTP workloads 
tables can be characterized into following broad categories. 
- Small and frequently updated e.g., warehouse. 
- Medium table which is frequently inserted or updated. 
- Large table which is insert only or update heavy, but usually 

only a small portion of such large tables are active. 
These characteristics serve as guiding design principles for 

ILM. Small and frequently updated tables are to be retained in 
the IMRS. For medium-sized tables, data is attempted to be 
retained while it is active and typically we expect only some 
portion of the table to be residing in the IMRS. For large tables, 
we expect that some small slice of data is typically active, so a 
small percentage of such large tables’ data may be in-memory. 

IV. STORING HOT DATA IN-MEMORY 

We decide whether to store a row in-memory at runtime 
when a statement makes access to the row. Under the 
assumption that a newly inserted row will most likely be 
accessed again, for the most part, inserts will be directed to the 
IMRS initially, thereby also avoiding any contention at the 
page-level. 

At the first access to a row in the page-store, it is not easy to 
predict if the row would be accessed frequently in near future. 
Simple heuristics based on scan type, hotness of buffer etc. are 
used to determine row hotness. We take into account access 
patterns specific to a workload to determine which rows are 
considered “hot”. For example, a row from the page-store is 
brought into the IMRS if it is accessed through a unique index 
(point query or updates), in anticipation that such rows may be 
re-accessed by the workload. Most OLTP tables tend to have a 
primary key, and access driven by unique index key access is a 
commonly-seen usage. For example, in TPCC, the warehouse 
table is accessed and updated by most of the transactions, 
driven by primary key access. By our technique, in this case, all 
rows in the warehouse table will be considered “hot” and will 
remain in-memory. 

V. AUTO IMRS PARTITION TUNING 

SAP ASE supports semantic partitioning of tables (and 
indexes). For a partitioned table, individual partitions may be 
affected differently by the workload. As an example, in a range-
partitioned orders table, partitioned on the order_date column, 
the rows from partition holding most recent orders that are 
processed will tend to be “hot”. An unpartitioned table is 
treated as single-partitioned table. All ILM techniques, such as 
monitoring, metrics collection, analysis etc., are applied at a 
partition-level. For an unpartitioned table, these will be applied 
at the table-level. In the following sections, the term partition 
must be understood as an individual data partition for a 
partitioned table, or the entire table for an unpartitioned table. 

This technique disables or re-enables use of in-memory 
storage for certain ISUD operations on certain partitions by 
monitoring the workload on rows in the IMRS and in the page-
store. Auto IMRS partition tuning results in the following 
choices: 
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  Disallow storing rows in-memory for some partition if it 
finds that the rows brought in the IMRS for that partition are 
not significantly reused by the workload. 

  Enable IMRS use for a partition if performing in-memory 
operations may provide large performance gain over page-
store due to issues like contention (in the buffer cache) or 
change in workload and possibility of increase in reuse 
pattern for the rows in a partition. 
Using the IMRS for all the tables may require large memory 

but users may not want to (or may not be able to) handpick 
some hot tables as IMRS-enabled. Auto-partition tuning 
technique allows the user to enable IMRS for all the tables and 
ensures that the server will intelligently use IMRS-storage only 
if it benefits for a specific partition / table, thereby keeping 
memory usage optimal. 

Auto-partition tuning involves a set of strategies that are 
described below. 

A. Monitoring the workload 

To effectively perform workload analysis, some counters 
need to be maintained by the execution engine. However, 
maintaining counters slows down the transaction performance 
especially in multi-core system due to cache-invalidations 
resulting from updates to the counters. 

To avoid the performance degradation due to monitoring, an 
efficient mechanism to monitor the workload is provided. This 
is implemented using per-CPU core-friendly counters to 
capture various operations happening in the IMRS and 
aggregating them across all the counters to get the current value 
of the counter. This ensures that there is no cache invalidation 
to modify this counter, as the memory for a counter is updated 
on only one core and the counter always exists in the cores’ 
L1/L2 cache.  Many of the ILM-techniques explained later use 
these simple counters. Some of the important counters used are: 
Partition-specific IMRS-memory used, number of rows stored 
in-memory for a partition, total number of operations which 
accessed row stored in-memory for the partition (re-use count), 
number of operations performed on pages in the partition, 
number of operations on page-store which observed contention 
etc. In addition, per-row access timestamps are maintained to 
loosely track row hotness. These timestamps are updated 
occasionally when rows are accessed, and are not seen to cause 
any performance overheads. 

B. Self-tuning 

Auto-partition tuning to make disablement and re-
enablement decisions is performed by a background Pack 
thread. This is important as the user does not need to execute 
some commands periodically for this to happen and the system 
responds to the workload continuously. Self-tuning is done by 
the Pack thread which wakes up after some large number of 
transactions complete and then examines the above counters to 
observe various patterns and makes the decision accordingly. 
The time window between such large number of transaction is 
referred to as the tuning window, usually in the order of a few 
minutes. Self-tuning decisions take into consideration counters 
observed in the previous and present tuning window to respond 

to changing workload patterns. Since self-tuning uses counter 
difference to identify new IMRS usage for a partition it results 
in access-pattern based ageing. For example, if a partition had 
high re-use initially and then was not used much later, then later 
tuning-cycle would determine partition as cold as it does not 
rely on historical counters alone. 

The choice of either enabling or disabling IMRS usage for a 
partition is only applied if the same choice is made successively 
for few tuning windows. This avoids a situation of hysteresis 
where dynamically changing workloads repeatedly result in a 
change in the IMRS-enablement for a partition. 

C. Disable in-memory operations on a partition 

Partition tuning disables IMRS usage for partitions after 
careful workload analysis of operations performed in the IMRS. 
Following heuristics come into play for partition disablement: 

- Average reuse of rows: Re-use of rows is the number of 
select / update / delete operations on rows while they are in the 
IMRS. Partitions with low re-use rate for rows may not benefit 
much by storing rows in the IMRS, rather they will 
unnecessarily consume the IMRS memory. If a partition has a 
low re-use rate, then its IMRS usage is likely to be disabled. 

- Partition IMRS utilization: If the memory footprint of a 
partition in the IMRS is small (say, < 1% of the IMRS cache), 
it is not considered for disablement. Such small partitions do 
not consume much memory, therefore, disabling them may not 
gain much IMRS cache capacity. This heuristic also guards 
against a premature disablement decision when a table is newly 
created, or data is loaded into an empty table. 

-  IMRS cache utilization: If in-memory storage has lots of 
free memory then none of the partitions are considered for 
disablement. Reason behind this heuristic is that it is not 
necessary to turn off IMRS usage if there is enough memory in 
the cache. This heuristic guards against a premature 
disablement decision after a server boot (when applications are 
initializing new partition accesses) or for a new database 
creation. 

- New IMRS usage by a partition: Slow growing partitions 
do not cause a huge load on the IMRS cache. Therefore, if there 
are not enough new rows brought into the IMRS for a partition, 
then it may remain as IMRS enabled. This heuristic also avoids 
making a disablement choice for  partitions which are active 
during only some intervals of the day, week, etc. For example, 
continent specific partitions.  

D. Enable in-memory operations on a partition 

Partition tuning may turn off IMRS usage for a partition due 
to low re-use operation on the rows in the IMRS for that 
partition. Such disablement could result in performance drop in 
some cases. This technique internally identifies such cases and 
re-enables use of the IMRS for such partitions using the 
following heuristics: 

- Contention on the page-store: If a partition is disabled for 
IMRS use and operations on the page-store experience 
contention then such partitions may be re-enabled for IMRS use. 

- Increase in reuse operation: If the number of reuse 
operations on a partition during the tuning window increases 
considerably compared to the reuse in the tuning window in 
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which the partition was disabled for IMRS-use then the 
partition is again re-enabled for IMRS-use.  

VI. PACKING COLD DATA FROM THE IMRS 

Identifying cold data in the IMRS and relocating such data 
to the page-store (sometimes also referred to as anti-caching 
[17]) is a key component of our architecture. We call this 
operation as Pack. In our BTrim architecture [3], Pack 
operation is offloaded from user transactions and is performed 
automatically by one or more background Pack threads. The 
pack sub-system must balance the volume of data packed 
versus the load of newer data coming to the IMRS. This section 
describes the techniques used to achieve the following: 
Determine if a row is cold: It is important to identity if a data-

row is cold or not before packing it. If a hot row is packed, it 
may be accessed by subsequent transaction(s) which will 
again bring it back to the IMRS. This not only wastes 
processing performed by the pack operation but also slows 
down transactions as they have to access hot data from the 
page-store and migrate it to the IMRS.   

Locate cold rows efficiently: The in-memory store may have 
a lot of rows and many of them will be hot rows so locating 
colder rows quickly is important. If the pack sub-system 
spends a lot of time in finding such cold rows, then it will be 
inefficient and may not be able to keep with the new load 
coming to the IMRS. 
The rest of this section discuss strategies implemented to 

efficiently locate and pack cold rows, and to maintain stable 
IMRS capacity. 

A. Steady Cache Utilization 

The design goal of ILM and Pack is to keep utilization of 
IMRS cache stable and at a reasonably high value (e.g. 70%). 
Keeping it stable is even more important as it ensures predictive 
performance. Unpredictable variations in system performance 
due to varying resource utilizations is not something that 
customers would like to see. 

To ensure a steady cache utilization, we provide a user-
configurable threshold called steady cache utilization 
percentage. As the workload increases, so does the cache 
utilization whereas the pack sub-system tries to decrease the 
utilization. The ILM schemes for transaction processing and 
pack sub-system try to keep the cache utilization hovering 
around this threshold. In Sec. VIII (c), we provide experimental 
evaluation of steady cache utilization in an OLTP setup. This 
threshold is used as follows to keep the cache utilization stable. 

The background pack threads wake up to pack the data only 
when the cache utilization exceeds this threshold. Pack threads 
run in one of the following levels based on current IMRS cache 
utilization: 

-  Steady-State Pack: This is the default mode for pack where 
rows are packed only if they are cold as defined by ILM rules. 

-  Aggressive Pack: If the cache utilization exceeds steady 
cache utilization and is more than half the difference between 
that configured value and the cache size, then the pack sub-
system start packing more aggressively without applying row-

hotness heuristics. In such a case, even hot rows could be 
packed to free up memory. 

If cache utilization increases while aggressive pack was 
happening, server decides to stop storing new rows in the IMRS 
until cache utilization drops (as a consequence of pack). 
Meanwhile, all operations will be performed on the page-store, 
temporarily resulting in perhaps sub-optimal performance, 
however, without causing any application outage. This ensures 
that the pack sub-system is not over-loaded by incoming newer 
data and needs to pack only the existing cold data in the IMRS. 

B. Partition-level Relaxed LRU Queues 

To quickly locate the cold rows to perform a pack operation, 
our system uses a variant of relaxed LRU strategy used in 
traditional buffer cache-replacement schemes. As individual 
rows are being identified as being cold, the design attempts to 
keep the book-keeping overheads of tracking access to rows 
low.  

Relaxed LRU queues are maintained to track cold rows. 
Cold rows are expected to be found at the head of a queue, and 
hot rows toward the tail of the queue. Important aspects of such 
queues that help to efficiently execute various pack heuristics 
are described below. 

 Partition level queues: Separate queues for each 
partition are maintained as opposed to one queue for all rows in 
the database (or in the IMRS, across all tables). We chose per-
partition queues rather than a single LRU queue across all 
tables in the IMRS for the following reasons. Individual per-
partition queues better reflect the activity which may vary 
across partitions, and over time. Per-partition queues also help 
to quickly locate packable-cold data from colder partitions. 
Moreover, our overall pack system is driven with the help of 
workload analysis on different partition accesses. A single-
queue of rows across all tables runs the risk that a certain row 
may appear “cold” relative to all the rows in the IMRS, but is 
likely to be a more active row for the small set of rows in the 
specific partition the row belongs to. A key distinction between 
classical cache-replacement strategy and Pack is that the latter 
is intimately tied to operating on a tables’ rows. Cache 
replacement may simply evict “cold” rows from the cache, but 
Pack, on the other hand, has to collect a bunch of cold rows 
from one partition (or table), remove them (logged-delete) 
from the IMRS and move them (logged-insert) to the page store. 
Partition level queues for cold rows help in consolidating these 
operations while packing candidate rows from one partition. 
For example, accessing the metadata of a table to pack a set of 
rows can be done once for a batch of packable rows. This allows 
pack threads to move data to the page store more efficiently for 
a single partition than by using a single queue at the database 
level, wherein cold rows from different tables could be inter-
mingled.  
Multiple queues for each partition: Each partition has 
multiple queues based on the operation which brought the rows 
into the IMRS. There are separate queues, one each for inserted 
rows, migrated rows (rows updated from page-store to IMRS) 
and cached rows (rows selected from page-store and cached in 
the IMRS). Having separate queues help because hotness 
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characteristics for each of the row types or partitions may be 
different. For example, the new_orders table being a heavily-
inserted table ends up with more rows in the inserted rows 
queue. This table, being a queue-like table, is more likely to 
have newly-inserted rows updated / processed. Older rows that 
reside in the page-store are less likely to be updated or scanned, 
so the migrated or cached queues, respectively, for such rows 
tend to be less useful. 

Queue Maintenance offloaded from transactions: IMRS-
GC threads have to process every IMRS row created by a 
transaction to reclaim memory from obsolete versions. We 
piggy-back on this activity as follows. GC threads insert a 
newly created IMRS row(s) at the tail of the ILM-queue. If a 
pack thread finds a hot row at the head of the queue, it will not 
pack the row but move it to the tail of the queue. This way, hot 
rows will be gradually relocated to the tail of the queue, 
bubbling up colder rows to the head for further packing. This 
gives a behaviour similar to that of LRU and also avoids 
performance overheads of constant row shuffling. 

This design helps in two ways: (a) Since it is not performed 
in a transaction’s execution path, transaction response time is 
not affected. (b) As queues are maintained by background 
threads, which are far fewer in number as compared to number 
of active transactions, any contention to maintain such queues 
is very low.   

C.  Partition-Aware Pack Selection 

We expect that in an OLTP-workload the data coldness 
depends a lot on table partitions, their sizes, and type of 
operations on the partitions. Analysing these patterns provides 
information regarding the cold data in the IMRS. Some 
examples are mentioned below.  

- Number of reuse operation: We call SELECT, UPDATE, 
DELETE as operations which could re-use rows which are 
bought in the IMRS by a previous operation. A partition having 
a lower rate of re-use operation (w.r.t. number of its rows in the 
IMRS) has more number of cold rows compared to a partition 
having higher reuse rate. For example, history being an insert-
only table has very low reuse rate compared to orders table so 
history table would have more cold data to pack. 

- Growing vs stable partition: Our design anticipates an 
access pattern that in a partition which is constantly growing 
some part of data is hot for some time and may not be hot 
afterwards. Usually in growing tables, newly inserted data is 
more hot, and then cools off after the business activity is 
completed. Whereas in small and stable tables, (number of rows 
remains mostly static) most of the rows will be equally hot and 
may not have a lot of cold rows to pack. 

The following techniques ae used to efficiently identify cold 
rows based on access patterns to partitions. 
 Pack cycle and pack transactions: 

The Pack sub-system packs data in time epochs referred to 
as a pack cycle. In each pack cycle, the pack sub-system tries 
to pack some small percentage of current IMRS cache 
utilization, referred to as NumBytesToPack. The idea being that, 
due to the transactional workload, if cache utilization is 
growing sufficiently to trigger a pack activity, then the pack 

sub-system’s goal is to bring down the utilization gradually by 
small percentages, and not dramatically. This small percentage 
of current cache utilization translates to number of bytes that 
need to be packed.  

A naïve approach could be to distribute the 
NumBytesToPack bytes uniformly across all active partitions. 
This has the downside that all or most of the rows from some 
small partition (e.g. warehouse table) are unnecessarily packed, 
even though they are hot. Our approach is an improved design 
over this naïve solution. At the beginning of a pack cycle, this 
number of bytes to pack are distributed among active partitions 
of IMRS enabled tables based on the current footprint 
(memory-usage) of the partitions and their (re)usability in the 
IMRS. This process is referred to as apportioning bytes to pack 
for each partition for the pack cycle. Cold rows from one 
partition are packed by one thread, in smaller pack transactions, 
till the target number of bytes apportioned to each partition are 
released after packing. Once all target bytes are processed the 
current pack cycle finishes and the next pack cycle starts with 
latest metrics for memory footprint and re-usability across all 
partitions.  
 Pack cycle-byte distribution: 

Based on the metrics collected, various indexes, as described 
below, are computed, which lead to the target number of bytes 
to pack value for each partition. 

- Usefulness Index (UI):  UI is an indicator of how 
useful it is (or has been) for storing rows in-memory based on 
the re-use of those rows. Usefulness of rows for each partition 
ఘܫܷ  is determined by considering SELECT, UPDATE, 
DELETE operations that happened on the rows stored in-
memory for the partition ρ. More SUD operation means more 
usefulness. UI is computed by averaging the usage metrics 
across all IMRS-enabled partitions Ρ. 

ఘܫܷ  =  
൫݈ܵ݁ఘ + ఘܷ݀ + ఘ൯݈݁ܦ

∑ ൫݈ܵ݁ఘ + ఘܷ݀ + ఘ൯ఘ∈உ݈݁ܦ
 

Number of inserts to a partition does not figure in this index 
as the usefulness is determined by number of reuses that have 
occurred to rows already in an IMRS. For example, in an insert-
only partition, the number of new inserts may be high, but 
usefulness index is low if subsequently the inserted rows are 
not selected or updated. 

- Cache Utilization Index (CUI): CUI is a relative 
metric across partitions comparing memory footprint in the 
IMRS for different partitions. This is determined by comparing 
memory consumption ݏ݁ݐݕܤఘ of partition ρ to cache utilization 
by other partitions. The larger partitions being prime candidates 
for packing are taxed heavily (i.e. more of their colder rows 
may be packed) so as to make more memory available.   

ఘܫܷܥ =
ఘݏ݁ݐݕܤ

∑ ఘఘ∈உݏ݁ݐݕܤ
 

Note, pack sub-system only comes into play when cache 
utilization is beyond a configurable threshold. So, in above 
expression if the total cache usage (denominator) is still low 
(say, < 50%), pack sub-system is not activated. In other words, 
the algorithm is sensitive to CUI only when IMRS memory is 
used sufficiently. 
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- Packability Index, PI: Based on these two indexes, a 
packability index (PI) of a partition ρ is computed as below. 
This index gives a relative score for what proportion of a 
partitions’ rows in the IMRS could be packed.  If a partition has 
high cache utilization, then its usefulness index has to also be 
higher otherwise its rows are candidates to be packed (i.e. due 
to low usefulness index). 

ߩܫܲ =
൫ߩܫܷܥ ⁄ߩܫܷ ൯

∑ ൫ߩܫܷܥ ⁄ߩܫܷ ൯ߩ∈Ρ

 

- Bytes to Pack: Finally, the bytes to pack 
(PACK_BYTES) from each partition ρ during a pack cycle are 
determined by distributing the total number of bytes to pack 
 in a pack cycle across all the partitions Ρ ݇ܿܽܲܶݏ݁ݐݕܤ݉ݑܰ
in the proportion of their packability index. 

ఘܵܧܻܶܤ_ܭܥܣܲ =  ݇ܿܽܲܶݏ݁ݐݕܤ݉ݑܰ × ௧ܫܲ 

D. Determining Row Hotness 

The Pack sub-system tries to keep the most recently accessed 
rows in memory. It uses a timestamp based filtering mechanism 
to retain rows that are accessed recently as well as frequently in 
the IMRS. Timestamp filtering mechanism tries to filter rows 
based on most recent access to rows in the IMRS. Both 
SELECT and UPDATE statements are counted as accesses. 
(Deletes are not interesting for this technique as this operation 
removes the row from the IMRS.) Server internally maintains 
and learns the timestamp filter based on the load created on the 
IMRS cache by current workload. 

1)  Applying Timestamp Filter (TSF) 

In a running system, this design attempts to keep utilization 
of in-memory cache stable and at a higher value (e.g. 70%). We 
call this percentage as “steady cache utilization” percentage. 
We use this steady percentage to apply TSF for in-memory 
storage. 

Time Stamp Filter (Ʈ) approximates the number of 
transactions which would cause memory utilization in the in-
memory cache to increase by a small percentage of current 
cache utilization. From that number, we extrapolate the number 
of transactions which would cause cache utilization to increase 
by steady cache utilization percentage Ρ. If memory utilization 
has already reached this steady level, then pack needs to pack 
rows. With recent access being the parameter for determining 
hotness, a row which is being operated by any of the last Ʈ 
transactions should not be packed as it is a hot row and the 
IMRS probably has more cold rows to pack. 

Databases usually maintain an atomic counter which is 
incremented when transaction in the database completes; this is 
called as database commit timestamp. Thus, during pack 
operation, a row is considered cold if its last access timestamp 
is greater than commit timestamp by at least Ʈ value. 

ሻߛሺܦܮܱܥ_ܵܫ_ܹܱܴ ≝ ܫܯܯܱܥ _ܶܵሺܾ݀ሻ − ሻߛሺܵܶ_ܵܵܧܥܥܣ  > ߬ 
 

Learning/tuning TSF delta is performed heuristically by 
monitoring how many transactions in the workload cause 
memory usage to increase by small percentage (e.g. 1-5%). 
This learning is performed in background as transactions 
complete in the database. 

- When the tuning-cycle starts, current cache utilization 
) and current commit-ts is recorded (݁ݖ݅ܵ) ଵܶ). 

- During a tuning-cycle, when memory utilization increases 
by the required small percentage ( ߜ ), current commit-ts is 
recorded ( ଶܶ). TSF (Ʈ) is then computed as 

߬ =
൫ሺ ଶܶ − ଵܶሻ×Ρ൯

ߜ
 

To handle the change in workload, system re-learns the TSF 
again after some time. 

2)  Partition Awareness for TSF 

We consider recency as well as frequency of accesses to data 
while determining if a row is cold/hot to pack. 
 Recency of access: 

The above learnt timestamp filter is applied during the pack 
operation. If a pack operation finds the difference between the 
current database timestamp and oldest modification timestamp 
of the row is less than the timestamp filter, (i.e. the row was 
updated sometime in a window given by the timestamp filter) 
then such rows are considered hot and are skipped for packing. 
This application of timestamp filter considers recency of access 
to the data rows. 
 Frequency of access: 

However, we don’t apply the timestamp filter for all the 
partitions as we know some of the partitions don’t have access 
pattern for very high row re-use. For such partitions, discarding 
rows to pack is not desirable as it wastes the processing cost 
without much gains. In fact, our pack cycle mechanism 
prioritizes rows from such partitions to be packed first even if 
they were inserted or updated in the IMRS later than rows in 
some other high-reuse partitions. 

We don't apply timestamp filter to determine row hotness 
during pack if the reuse rate is very low for a partition. This 
technique ensures that the frequency of access to the data rows 
is considered. 

ఘܧܶܣܴ_ܧܷܵܧܴ =
݈ܵ݁ఘ + ఘܷ݀ + ఘ݈݁ܦ

ఘݏݓܴ݉ݑܰ
 

Consider for example, due to page contention seen on the 
page-store, ILM-techniques decide to perform insert on the 
history table in the IMRS. However, this table has very low re-
use rate so it is desirable to pack early from this partition and 
make space available for newer data. In fact, the Pack cycle 
heuristics make sure that rows from this table are scheduled 
aggressively for packing. Even though some of these rows 
could be very recently inserted in the IMRS, due to low reuse 
rate they would get packed as timestamp filter is not applied on 
them. 

VII. PACK-ILM INTEGRATION WITH CONCURRENT ISUDS 

ILM methods are woven through data processing to 
seamlessly manage data movement between the in-memory and 
the page store. 

A. Granularity of Data Movement 

Individual rows can be moved between the page store and 
the IMRS. This allows fine tuning of hot data in memory. Data 
movement from the page store to the IMRS is done by ISUDs 
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as part of the statement execution. Data movement from IMRS 
to the page store is done by pack sub-system in the background.  

B. Non-blocking Online Data Movement 

Data movement from the IMRS to the page store and vice 
versa is done in an online manner. DMLs move data to the 
IMRS while holding row level locks. This does not prevent 
other DMLs or pack threads from moving other rows from one 
store to another. Scanners are transparently redirected to the 
appropriate store. Scanners can be active on a row while there 
is data movement between stores by DMLs or pack. Scanners 
which need consistent data (isolation level read committed and 
above) handle this by looking up the row in the IMRS after 
acquiring a lock. Since data movement needs locks on the rows, 
scanners can safely access the row. Scanners which do not take 
row level locks may access stale copy in IMRS or page store. 
Physical consistency of IMRS data seen by such scanners is 
provided by an internal technique called statement registration 
which blocks garbage collection until the scanner completes its 
work. Pack threads request a conditional lock on rows. If a row-
lock cannot be granted, row is skipped for pack. This prevents 
active DMLs from blocking pack. Each pack transaction packs 
only a small number of rows and commits frequently. This 
prevents DMLs being blocked for a long time by rows which 
are already locked by pack. 

VIII. EXPERIMENTS 

We demonstrate the benefits of ILM classification and hot / 
cold data movement through an OLTP benchmark based on the 
TPC-C benchmark [17]. Experiments were run on a machine 
with Intel(R) Xeon(R) CPU E7-4880 v2 @ 2.50GHz processor 
having 4 sockets / 60 cores / 120 logical CPU system and 1 TB 
RAM, SSD storage for data and log devices. Unless otherwise 
specified, experiments were done using scale factor of 240 
warehouses for TPCC schema, 200 concurrent users, and SAP 
ASE with 64 threads. 

In many of our experiments, we compare two setups for 
evaluation of ILM strategies. 
 ILM_OFF: Does not use any of the ILM heuristics 

mentioned in the paper. In this run, all accessed data is 
fully memory-resident in the IMRS through the workload. 
All the ISUD operations store data in the IMRS. There is 
no background pack activity happening to move data to 
cold store and cache utilization keeps on increasing. This 
is akin to an unlimited IMRS size. Practically we 
configured 150 GB of IMRS cache. 

 ILM_ON: Uses all the ILM heuristics mentioned in the 
paper to keep only hot data in the IMRS. Pack sub-system 
is configured to use 12 pack threads. The design goal of 
ILM_ON is to maintain stable cache utilization. 

Our experiments focus on end to end throughput, 
transactions per minute (TPM), which is the metric 
conventionally used for this benchmark. By our design, as 
online transactions are unaffected by ILM / Pack, we do not 
anticipate any increase in transaction commit-latency. However, 
this has not been specifically measured, and is something that 
can be investigated in future work. 

A.  TPCC Tables and Workload Pattern 

Our experiments were run on tables from the TPCC schema, 
so for quick reference and understanding of experiment data, 
this section provide typical workload pattern observed on these 
tables in TPCC benchmark run.  

Table Name Workload Pattern 

warehouse, 
district 

Small, medium-sized table respectively with 
high scan and update rates 

stock Large table with frequent update rates 
item Medium-sized read only table 

history Insert Only table 

order_line, orders Large tables. Heavy inserts, very low 
scans/update 

customer Medium-sized table. Heavy updates and 
some selects 

new_orders Both inserts and deletes (e.g. queue table) 

TABLE 1: PROFILE OF TABLES SEEN IN THE TPC-C SCHEMA 

B. Benefits of ILM Strategies 

In this section, we capture the benefits of ILM strategies with 
help of the following parameters comparing transactions per 
minute (TPM). 

 Relative TPM w.r.t. ILM_OFF: This parameter 
compares TPM with ILM_ON v/s ILM_OFF strategy. 

 % operations in the IMRS (Hit rate): This parameter 
captures percentage of all operations done in the 
IMRS with ILM_ON. For ILM_OFF setup this 
implies hit rate of 100%, as data is fully cached. 

 % reduction in cache utilization: This parameter 
measures how much less cache we could work with 
when ILM is on v/s ever increasing cache usage when 
ILM is off. 

 

 
Fig. 1. Benefits of ILM strategies comparing relative throughput metrics 

Fig. 1 shows the benefits of ILM by measuring the above 
parameters between the two schemes. The TPM gain is as 
compared to a baseline TPCC run on the page-store with the 
database fully-cached in the buffer cache. The TPM gain with 
ILM_ON is within +/- 10 % of what is observed in ILM_OFF 
setting (solid blue line in above figure). Note that ILM_OFF 
setting keeps all accessed data in memory, whereas ILM_ON 
setup only keeps hot data in memory. After a 30-minute run, 
the ILM_ON setup is able to operate with 60% of cache used 
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in the ILM_OFF setup (dotted blue line in figure) even while 
keeping TPM largely unaffected. Even with this reduced cache 
usage we observed 80% hit rate with ILM_ON, as shown by 
the dashed blue line. 

This shows that using ILM strategies, we can configure a 
system with a suitably smaller IMRS size and can run the 
workload in a stable manner without affecting performance. 

C. Cache Utilization 

This experiment demonstrates effectiveness of ILM 
strategies with respect to reducing cache requirement. Fig. 2 
shows cache utilization as the benchmark runs progress. For 
ILM_OFF setup (effectively, infinite memory), as expected 
cache utilization keeps on increasing as the benchmark run 
progresses. With ILM_ON, cache utilization remains stable at 
around 44 GB. On-going product enhancements further reduce 
the memory used for in-memory rows by shrinking size of core 
structures and improved memory allocation. These 
enhancements are not seen in these experiments but are 
available in recent editions of the product. 

 

 
Fig. 2. Cache utilization comparison between ILM ON and OFF schemes 

- Partition Level Cache Footprint 
In this section, we show the per-table cache footprint 

between the two strategies. Fig. 3 shows how the IMRS cache 
footprint increases for ILM_OFF setup for each table as the 
benchmark run progresses. It can be seen that for most tables 
cache footprint is growing. This is expected behaviour with 
ILM_OFF setting as new insert / update / delete commands 
continue to bring in new data to the IMRS. 

 
Fig. 3. Memory usage footprint of various tables with ILM_OFF 

In comparison, Fig. 4 shows how the IMRS cache footprint 
changes for ILM_ON setup for each table as the benchmark run 
progresses Note that cache utilization is mostly stable for all the 
tables as the benchmark run progresses. This corroborates data 

in Figure 2, which shows that cache utilization is stable with 
ILM_ON strategy. 

 

 
Fig. 4. Memory usage footprint of various tables with ILM_ON 

Note that the cache footprint for small, hot tables such as 
district and warehouse tables, remains the same with both 
ILM_OFF and ILM_ON setups. This demonstrates that hot 
tables continue to remain in the IMRS even with lower cache 
utilization using ILM heuristics. Lower cache utilization is 
achieved by packing cold data to keep cache utilization steady. 
Comparing Fig. 3 and Fig. 4, we can see that most of the 
reduction in footprint comes from large tables like order_line 
and orders (both have high insert rates with low scans), and the 
history (insert only) tables which are cold. IMRS cache 
utilization for these different table types is in-line with our 
design expectations. 

D. Pack Sub-system 

Fig. 5 shows the impact of pack in ILM_ON setup. Pack is a 
logged data movement background operation affecting both 
transaction logs and stores. It is not expected to affect TPMs as 
it is performed by background threads operating on cold data. 
There is no pack in ILM_OFF setup. In ILM_ON setup, as 
expected, data packed in MBs increases as the run progresses. 
However, there is minimal impact on TPM and it remains 
within 10% of the TPM for ILM_OFF run (used as a reference 
TPM). This shows that even with the pack processing and 
logging overhead in both the logs, pack is a low overhead 
operation, which also helps to keep cache utilization constant. 

 

 
Fig. 5. Normalized TpmC, comparing Pack overheads with both strategies 

From Fig. 3, with ILM_OFF the inflow rate of new data to 
the IMRS is about 2.5 GB / min. Correspondingly the outflow 
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rate of cold data packed from Fig. 5 is also about the same, 
thereby ensuring steady cache utilization with ILM_OFF, as 
observed in Fig. 3. 

1)  Pack Cycle Distribution 

As discussed in section VI, the pack sub-system assigns 
more “tax” to fatter cold partitions. This ILM_ON experiment 
demonstrates how pack adjusts number of rows to be packed 
based on re-use counts observed for rows in the IMRS and 
cache utilization (footprint) for each table. 

 

 
Fig. 6. Average per-row re-use counts across different tables 

Fig. 6 shows the average re-use of rows in the IMRS for each 
table in the experiment over the 30-minute period. Since data 
access in TPC-C is skewed, logarithmic scale is used. For 
example, in the 30-minute period, on an average every row in 
the warehouse table was accessed 227K times.  Cache 
footprints for various tables can be seen in Fig. 3. As expected 
by our design assumptions modelling OLTP workloads, small 
tables like warehouse and district show a very high cache re-
use rate. Large tables like order_line show very little re-use but 
a larger in-memory footprint of active data. Medium-sized 
tables like item and customer show reasonable re-use rates 
with some limited cache footprint.  

 
Fig. 7 Packed rows distribution across all tables, over 4 runs 

Fig. 7 shows the metrics on number of rows packed across 
tables, aggregated over 4 runs. The warehouse table has high 
reuse rate (227400), and low cache footprint (71 Kb). Hence 
only 580 rows were selected for pack. Note that as this data is 
aggregated over 4 runs, the number of rows selected for pack 
can be more than number of rows in table. Contrastingly, the 
order_line table has high cache utilization (~19GB) and low 
re-use rate (0.93), hence large number of rows (26M) are 
selected for pack. Most of the rows for pack are selected from 

order_line, orders, history, and new_orders tables, all of 
which have high cache utilization and low re-use. This also 
explains their footprint remaining the same despite new DMLs 
on these tables. 

2)  Partition Level LRU Queues Distribution 

This ILM_ON experiment describes how timestamp filtering 
is working in the benchmark runs and also explains how the use 
of partition level queues help to identify cold rows during pack. 

Fig. 8 shows the percentage of cold rows in every 10% of 
rows from the head of the partition level queue for tables in the 
benchmark. Pack threads remove rows to pack from head of the 
queue and so having more cold rows at the head of the queue is 
efficient for the pack sub-system. 

 

  

Fig. 8. Percentage of cold rows in every 10% of rows in ILM queues 

For tables that are frequently accessed, like the warehouse, 
district and stock tables, nearly every range has equally hot 
rows. For other tables like history and order_line, we see a 
sheer drop in the percentage of hot rows beyond the initial 2 
bands of rows, which is as expected by our designs. 

3)  TSF Tuning: 

From Fig. 8 we can see that TSF is qualifying some rows as 
hot and some as cold. For example, for the history and 
order_line tables all rows up to 20% from the head of the queue 
are cold. As you near the tail of the queue for these tables, the 
percentage of rows that are cold drops to about 40-50%. These 
are large tables with many cold rows. Warehouse and district 
are small tables with all rows as hot. This matches with general 
understanding of the benchmark workload behaviour on the 
table. This shows that TSF technique is able to correctly model 
hotness patterns.  

4)  Partition Level Queues:   

The Fig. 8 also partially justifies use of partition level (or, 
table level) queues, as opposed to a database-wide queue. 
Different tables and different partitions of the same table in the 
workload have different characteristics with respect to hot / 
cold rows. If one database level queue was used, then we 
anticipate that cold rows could occur anywhere in the queue and 
locating them during pack would have been difficult.  

5)  Well-behaved Queues:  

Our techniques do not need any special processing to shuffle 
cold rows from the start of the queue due to transactions 
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operating on such rows. We only move hot rows to the tail of 
the queue when pack discards such a row upon finding it hot. 
Due to partition level queues, we observed that the queues are 
well behaved with majority of cold data at head of the queue 
and hot data at end of the queue. 

6)  Steady Cache Utilization 

To study the impact of the steady cache utilization 
threshold, we re-ran the TPCC experiment with the same setup 
as described earlier, using ILM_ON. Fig. 9 shows observed 
highest cache utilization for different values of this threshold. 
It can be seen that actual value of highest cache utilization 
follows value of configuration parameter. This shows that pack 
and ILM mechanisms are able to balance the demands on the 
IMRS to maintain cache utilization. 

 

 
Fig. 9 HWM Cache Utilization for different values of steady cache threshold 

For the same experiment, we explored the impact on overall 
normalized throughput and the work done by Pack sub-system. 

 
Fig. 10. Normalized ILM / Pack Parameters for steady cache utilization 

Fig. 10 shows the normalized values of various parameters, 
with respect to the maximum value for each metric across 
different steady cache utilization thresholds studied. For 
example, the maximum TPM delivered was observed at the 
steady cache utilization threshold of 70%.  
 NumRowsPacked shows that at lower steady cache 

utilization values, as expected, more data is packed.  
 NumRowsSkipped is a metric for the number of rows 

skipped by Pack when they were found to be hot. This 
metric is gradually increasing at a slow rate. This is 
because at higher steady cache utilization, more rows are 
considered hot and are, therefore, skipped by pack. This 
also shows that TSF tuning is adapting well to the changing 
steady cache utilization. 

 The TPM remain mostly unaffected because hot data is still 
retained at lower values of steady cache utilization. These 
values also show that background pack is not an expensive 
operation with reasonably configured cache size.  

The results from Figs. 9 and 10 show that with ILM_ON, 
across different steady cache utilization thresholds, our system 

is able to maintain IMRS cache-usage reasonably around this 
threshold, while delivering stable performance gains. 

IX.  RELATED WORK 

Performance of database systems constrained by memory 
has been studied previously, but with significant differences 
from our work. In [16], Graefe et al present an architecture that 
optimizes buffer pool designs to support “big data” workloads 
which cannot fit in available memory sizes. This work manages 
buffer pool usage using pointer swizzling, but does not address 
areas considered by this work around contention issues arising 
from page-oriented storage and row-level in-memory 
processing.  

In [17], techniques referred to as Anti-Caching; i.e. moving 
cold data from in-memory to disk storage are presented as an 
extensible alternative to fully in-memory databases. The anti-
caching aspects of this work is close to our design however, the 
storage model starts initially in-memory and then pushes cold 
data to disk-storage. Access to cold data that was evicted (i.e. 
access from page-store) results in rolling back certain 
transactions while the system retrieves relevant tuples in the 
background. This approach seems quite non-user-friendly. Our 
scheme has no such issues with application outages. Other 
high-level design choices such as which tables / partitions to 
consider for row-eviction, the number of cold rows that will be 
evicted etc., are similar to our work, but the actual logic is 
different at lower-levels. 

Hekaton [4] is a Microsoft SQL Server's new DBMS engine 
optimized for in-memory processing of OLTP workloads. 
Hekaton calls tables which are stored in-memory as "Memory 
optimized" tables which need to be entirely memory resident. 
This is different from our approach where a table is not required 
to be fully in-memory, may have its data across page store and 
the IMRS, and could end up being fully memory-resident if the 
workload so requires. 

Siberia [5] and [9] investigate cold data classification based 
on data access capture and offline analysis of access log. 
Siberia is prototyped on Hekaton and [9] is prototyped on 
VoltDB [11]. [5] and [9] investigate efficient estimation 
techniques based on log of record accesses. Estimation is done 
offline using log based on exponential smoothing based 
algorithms and cold data is moved to cold store (Siberia 
extensions for cold data movement are described in [10].) As 
an objective, Siberia estimates K hot rows, where hotness is 
identified by record access logs. Our work is fully integrated 
into the SAP ASE generally-available product. We run 
classification algorithm online using scalable engine level 
runtime counters. Our work internally adjusts number of hot 
rows that can be stored in-memory based on resource utilization 
and data sizes. No additional log collection is required by user. 
Partition tuning is performed by a set of background threads 
with configurable periodic cycle. Temperature classification is 
available in Siberia [5] and [9] at a row level. Our work also 
takes into account patterns where rows in a partition are 
accessed in similar manner. For example, in a table partitioned 
by month, partitions for recent months are more likely to be hot.  
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In addition, in our work selects can also bring rows to the IMRS, 
which is not a feature supported in these alternate schemes. 

HyPer [7] and HYRISE [8] propose hybrid database systems 
capable of handling OLTP and OLAP workload. These systems 
require the whole database to be in memory. Again, the BTrim 
architecture imposes no such restrictions. Hyper advocates 
partitioning approach where data is partitioned such that most 
transactions need to access data only from a single partition. 
HYRISE auto-partitions tables based on type of access. Both 
these systems do not handle hot / cold data classification 
problem because of their full in-memory nature. 

Funke et.al. [6] present an access based hot/cold data 
classification scheme for Hyper. Cold data is stored in a 
compressed format. Classification is at a page granularity in [7], 
where page stores a subset of data in a column. BTrim 
architecture stores data at a row granularity, and individual 
rows are classified as hot or cold. Classification at a row 
granularity potentially allows more data if only a few rows on 
a page are hot. In HyPer, classification is done using hardware 
assisted component called “Access observer”. BTrim uses 
platform independent, lightweight scalable partition level 
metrics to determine re-use for classification. 

Per our understanding, there is no other commercially 
available DBMS engine that tightly integrates cold / hot data 
classification and packing (anti-caching) seamlessly in a single 
product. We believe the availability of this work is itself a 
significant differentiator and we look forward to performance 
details from customer implementations. 

X. CONCLUSIONS 

In this paper, we presented various ILM-schemes to retain 
only the hot data in memory and store the colder data in 
traditional page-store. Our experiments show that, with the help 
of our ILM-techniques, we can get the performance gains of in-
memory processing without requiring that all data be in-
memory. Backed by ILM-strategies, the tiered in-memory 
storage was able to achieve performance close to a system 
where all the data was stored in memory. 

The active working dataset often remains stable and our 
experiments show that we are able to deliver constant 
performance gains with stable cache utilization in the system. 
The stable cache utilization is one of the important parameters 
for using this technology in the field. 

To ensure that the in-memory cache is used to store only hot 
data, it is important to have ILM-strategies for both (a) 
determining data hotness while storing data into in-memory 
cache (b) determining data coldness while packing/evicting 
data from the in-memory cache. The novel ILM-techniques 
presented in this paper are all driven by workload-
characteristics and make use of partition-specific workload 
patterns to easily and efficiently determine the data hotness and 
coldness. Our experiments show that our techniques perform 
well in a representative OLTP workload to successfully identify 
hot and cold data. We are also looking to provide easy-to-use 
user configurations drawing on ILM rules to specify, for 
instance, that a small table be fully memory-resident, 
overriding ILM rules in specific cases. This will provide 

features such as fully in-memory tables and “pre-warmed” 
IMRS caches. 
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