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Abstract—Modern particle physics produces volumes of ex-
perimental data that challenge any data processing system.
To illustrate, the trigger system of the LHCb experiment at
CERN must sustain a data rate of 4 TB/s, yet maintain real-time
characteristics.

In this work, we report on ELPACO, a distributed event
processing platform for scientific data. Its key characteristics are
excellent scalability and high resource efficiency. ELPACO inherits
its favorable scalability from Apache Storm, which we used as
a basis for our platform. For resource efficiency, we tailored
ELPACO to Eriador, a parallel, ARM-based hardware substrate
with excellent energy/performance characteristics.

With experiments on realistic data, we confirm a linear
scalability (throughput vs. core count) and a 2.5× improvement
in energy efficiency compared to existing solutions.

I. INTRODUCTION

Particle physics has become a massively data-intensive dis-
cipline. Huge particle accelerators—such as the Large Hadron
Collider (LHC) [1] at CERN—produce vast amounts of exper-
imental data—4 TB/s in the case of the LHCb experiment [2]
at CERN—which often must be processed in real time. Ana-
lyzing these data volumes has become the key limitation of the
domain: any improvement in analysis performance translates
into better insights on the physics side.

In this work, we report on ELPACO (“Efficient Low-Power
Particle Combiner”), a data processing platform that we
built on the basis of Apache Storm. To meet the throughput
demands of scientific applications now and in the future, we
designed ELPACO for maximum scalability (with the amount
of processing resources). Experiments confirm that ELPACO
scales linearly also for large core counts.

With (linear) scalability in place, resource efficiency be-
comes a primary concern for large-scale data processing
systems (in order to keep cost low; better throughput can
always be achieved by adding more cores). With ELPACO,
therefore, we aim for (i) low-cost hardware and (ii) high
energy efficiency—both aspects that match the characteristics
of ARM processor architectures. We tailored ELPACO to run
on large-scale, low-cost, and low-power ARM installations.
On this basis, ELPACO achieves a 2.5-fold advantage in power
consumption over conventional solutions.

Contributions. The contributions of this paper, therefore, are
(i) we demonstrate how a typical use case from the domain

of particle physics can be realized on top of a platform
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Fig. 1. D±
s → ϕ(1020)π± → K+K−π± decay channel. A D±

s -meson
decays into a pion (π±) and two kaons (K+ and K−), which will be seen
by the LHCb detector system.

like Apache Storm;
(ii) we report on adaptations, including a tailor-made sched-

uler, that we applied to Apache Storm to leverage the
potential of low-power processors; and

(iii) we experimentally confirm that ELPACO meets the set
expectations toward high scalability and energy effi-
ciency.

Outline. This paper is structured as follows. Section II
sketches the characteristics of typical analysis tasks in the
area of particle physics. Section III provides the necessary
background on Apache Storm, before we describe the inner
workings of ELPACO in Section IV. We evaluate ELPACO in
Section V, before we wrap up in Section VII.

II. THE LHCB EXPERIMENT AT CERN
The Large Hadron Collider (LHC) at CERN is the world’s

largest particle accelerator, located near Geneva (Switzerland).
About 100 m under the earth surface, protons are accelerated
to near-light speed and then made to collide with one another.
As a consequence of the collision, new, unstable particles may
form up, but quickly decay into smaller decay products.

Figure 1 illustrates this for the decay channel D±
s →

ϕ(1020)π± → K+K−π±. A D±
s -meson decays into a

ϕ(1020) and a pion (π±); the former further decays into two
kaons of opposite charge (K+ and K−). In practice, the D±

s

and ϕ(1020) will travel a few centimeters before they decay.
The decay products (here the π±, K+, and K−) can be

detected through a series of detectors, which are placed several
meters away from the primary collision vertex, as illustrated
in Figure 2. [2]

Many possibilities (decay channels) exist according to
which the colliding protons might form new particles and



Fig. 2. LHCb detectors. The proton beam is located horizontally in the center
of the picture. Protons collide near the “vertex locator” on the left; decay
products pass a magnetic field before they are detected in several layers of
detectors.

decay afterward. Only few of them, however, are of interest
to the physicists (such as the above D±

s → · · · → K+K−π±

channel). A key part of the analysis, therefore, is to test
whether the particles observed by the detectors match a decay
channel of interest and filter out others. To this end, recorded
energies and particle momentums are added up for each step
in the decay channel and according to the rules of physics
(preservation of energy and momentum); and the computed
mass of the D±

s -meson is compared to its expected mass
(1968.47±0.33 MeV/c2).

This part of the analysis, therefore, acts as a filter to the
input data stream. But a highly selective one: only 10−12 to
10−15 of all collisions are “interesting” to the physicists in
this sense.

A. Data Characteristics

Given the low probability of observing an “interesting”
collision, physicists produce a vast number of collision ex-
periments in the hope of finding a few interesting ones.
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Fig. 3. LHCb trigger system.

The LHCb experiment operates at a frequency of 40 MHz;
that is, 40 million collisions are performed every second (year-
round). For every collision, detectors record about 100 kB
worth of data, resulting in a raw data stream of about
4 TB/s. [3]

This data rate clearly is too large to permanently store all
measured collisions. Instead, a trigger system (pre-) analyzes
the data stream to keep only those data set that (might) match
an interesting decay channel.

To illustrate the ELPACO platform, in this paper we focus
on the D±

s → · · · → K+K−π± decay channel mentioned

Fig. 4. Storm Architecture

before. The necessary stream filter, slightly simplified, receives
a tuple stream of the following schema:

sch(Track) = (runNumber , eventNumber ,momentumX ,
momentumY ,momentumZ , energy ,
charge, probNNpi , probNNk) ,

where runNumber and eventNumber identify the collision
associated with the particle track; momentum , energy , and
charge denote the particles momentum, energy, and charge;
and probNNpi /probNNk indicate whether the track is as-
sumed to belong to a pion/kaon (respectively).

In our experiments (Section V) we use a data stream subset
that contains 172 million tracks, which are associated to 3.7
million collision events (i.e., this data set, close to 50 particle
tracks were recorded for each collision).

B. Analysis Task

To match recorded track information to the decay chan-
nels of interest, the analysis framework must first combine
candidate tracks that belong to the same collision experiment
(runNumber , eventNumber ). From a database perspective,
this resembles a join or cogroup operation. Afterward, formu-
las for energy and momentum preservation must be applied
to the combination—an additional join condition in database
terms.

III. APACHE STORM

Apache Storm [4] is an open-source framework for dis-
tributed real-time stream processing. Its characteristics—in
particular its potential for scale-out—make it a promising basis
for the realization of our ELPACO platform. Here we give a
short background on the inner workings of Apache Storm,
before we discuss how we take advantage of Apache Storm
in ELPACO (Section IV).

A. Storm Architecture

Figure 4 shows the architecture of a Storm cluster, which
consists of master, worker and zookeeper nodes. The master
node starts a daemon called nimbus. The nimbus receives
the topology and schedules the needed executors and tasks
to the supervisor slots. In addition the nimbus monitors the
supervisors and restarts them if needed.

A worker node starts a daemon called supervisor. The
supervisor receives the instructions of the nimbus and starts



Fig. 5. Dataflow inside a Worker Process.

or stops processes on the node. A supervisor has several
slots, where each slot spawns a worker process, which is a
JVM (java virtual machine). Parts of a Storm topology are
executed inside the worker processes. It contains executors
and tasks. An executor contains several tasks and got queues
for communication with the tasks and the worker process. A
task relates to an instance of a spout or bolt, which means all
the logic of a topology is processed here. The data flow inside
a worker process is illustrated in Figure 5.

Storm topologies are real-time applications, where the data
flow of streams is described as a directed graph, with vertices
representing computations of the topology and edges repre-
senting the transfer and partitioning of stream tuples. The com-
putations of a topology are done in so-called spouts and bolts.
A spout creates a new stream based on an external services
like a message broker or an API. Streams are subscribed by
bolts, which receive the containing tuples, transform them and
generate new streams based on their transformations.

The topology defines the partitioning of a stream for a
subscribing bolt with stream groupings. While shuffle grouping
distributes the tuples of a stream randomly, so that every
instance of the bolt receives an equal number of data, fields
grouping groups the tuples by a field of the tuple. This
allows processing of tuples with identical attributes on the
same worker node. There are several more stream groupings
for different requirements and in addition Storm lets you
implement your own logic.

Each zookeeper node runs an instance of Apache Zookeeper
[5]. Zookeeper coordinates the communication between the
nimbus and the supervisors, which is a key feature to realize
failure handling in Storm.

IV. ELPACO

To run an analysis for LHCb stream filtering, in ELPACO we
map the analysis task to a Storm topology. Here we illustrate
the concept based on the aforementioned reconstruction of a
D±

s -meson.
Even for simple analysis tasks (such as the decay channel

described in this paper), in ELPACO we try to break down
the data flow in several fine-grained steps/bolts. This allows
the underlying Storm framework to better parallelize and scale
our workload. The topology graph for our scenario is shown
in Figure 6.

In the actual experiment, data may be arriving straight from
the data acquisition frameworks. Here we abstract away from
these components and prepare all input data in the ORC file
format [6], which allows for fast and parallel reading without
making the data source (spout) the bottleneck of the entire
system.

The ORCReadingSpout reads all the input files in parallel
and creates a new tuple for every track. Together with the
track’s unique ID, which describes the assigned event, the
spouts emit the tuples to the GroupEvents bolt using fields
grouping. This bolt collects the incoming tuples and emits
a list of tuples of one event to the next bolt, if every
tuple was received successfully. This can be checked with
the information of the tuple, where the event size is stored
additionally to the attributes of the track.

Matching against the D±
s → ϕ(1020)π± → K+K−π± is

implemented in two steps (bolts)—again, to improve paral-
lelization and load balancing: a CombineKaons bolt creates
candidates for the ϕ(1020) particle and forwards them to the
AddPions bolt. AddPions performs the actual matching and
yields candidates of the D±

s -meson (if any are found).

A. Dealing with Low-Power Hardware

For maximum resource efficiency, we designed ELPACO
to run also on low-power, low-resource hardware (precise
hardware information follows in Section V-A).

It turns out, however, that stock configurations of Apache
Storm can not properly handle hardware with strong resource
limitations—we experienced frequent crashes of individual
nodes where often the entire setup could not recover from.

A key challenge is the proper deployment of tasks to ensure
an even distribution of load. Standard configurations lack
cost information from the application side to find suitable
deployments. To this end, we extended Apache Storm by
a tailor-made scheduler. Our scheduler is well-prepared to
deal with constrained hardware and will make sure tasks are
assigned evenly to the available processing nodes.

Our scheduler classifies all spouts/bolts into three slot types.
A weight associated with each type defines the number of
instances of that type which can be assigned to an execution
slot:

(i) The type 1 category contains all spouts. They perform
a lot of disk/SSD I/O; at most one of them should be
scheduled on a node.

(ii) Shuffling/grouping operations are categorized as type
2. They are relatively light-weight and dominated by
communication with peers. Our scheduler lets up to six
of them run within a slot.

(iii) Compute tasks (CombineKaons and AddPions here) per-
form the actual computation (as seen from the user’s
perspective). On our system, we found a maximum of
two such tasks on a slot to result in good load balancing.

Table I lists the resulting assignment for our sample analysis
task.



Fig. 6. Topology graph for the execution of our example analysis with ELPACO.

TABLE I
INSTANCES PER TYPE OF SLOT.

Bolt Type 1 Type 2 Type 3
ORCReadingSpout 1 0 0
GroupEvents 0 6 0
CombineKaons 0 0 2
AddPions 0 0 2

TABLE II
HARDWARE CHARACTERISTICS OF OUR TEST SYSTEMS.

Ressource
Intel
Xeon

ARM-
Cluster

CPU Amount 2 40
CPU Freq. 2.40 GHz 1.50 GHz
Cores 24 160
Threads 48 160
RAM 256 GB 80 GB

V. EVALUATION

To evaluate ELPACO, we ran experiments on two very
different hardware platforms. Use of a commodity Intel server
machine allows to relate our work to existing solutions. A
key benefit of ELPACO is its ability to run on low-power
hardware. With experiments based on an ARM-based cluster,
we demonstrate the resulting advantages in terms of resource
efficiency.

A. Hardware

Our first system, our “high-performance system”, features
a dual socket motherboard with two Intel Xeon CPU E5-2695
v2 processors and a high amount of resources.

The second system is a low-power ARM-Cluster of 40
Odroid-C2 nodes. Each node hosts a Cortex-A53 64-bit CPU
with—compared to the Intel counterpart—strong resource lim-
itations. The 40 ARM nodes are connected to a gateway, that
will run Zookeeper and the Storm nimbus, so the nodes form
the heart of the cluster with 40 worker nodes. The hardware
components are listed in Table II. On both systems, Storm was
running in version 1.1.1 and Zookeeper in version 3.4.10. A
network storage connected with 3× 1Gbit/s was used as data
source for the spouts.

Table II summarizes the most important hardware charac-
teristics of both our platforms.

As mentioned above, our scheduler will always schedule
tasks in groups of one, six, or two, depending on their slot

TABLE III
PARALLELIZATION OF THE TOPOLOGY.

Instance
Intel
Xeon

ARM-
Cluster

ORCReadingSpout 12 12
GroupEvents 36 120
CombineKaons 48 48
AddPions 60 48

type. In Table III, we listed the resulting number of instances
that our scheduler created on the two hardware platforms.

B. Measurement Equipment

To compare the efficiency of the test systems, we have
chosen to record the energy consumption for processed tuples
and the energy-time-product For getting both quality scales,
the execution time and the power consumption has to be
metered.

In order to meter our reference system, we used a power
meter device plugged between the workstation and the mains
which is accessible via a network connection. This method has
got the disadvantage that the efficiency factor of the power
supply is also metered, but it is the least invasive method to
meter the overall power consumption.

For metering the boards in our low-power cluster, we used a
cluster internal solution which is driven by hall effect current
sensors and A/D-Converters with an I2C interface that can be
accessed by the Odroid-C2 boards.

C. Experiments

As indicated above, we evaluated ELPACO on a data set
with 172 million tuples. Here, we report execution times in two
components: during a startup phase, ELPACO will initialize all
nodes and workers before it enters the processing phase, which
reflects the steady-state situation that an actual execution at
CERN would observe.

Figures 7 and 8 illustrates an execution of ELPACO on our
ARM and Intel systems, respectively. The graphs show the
progress of time toward the right and CPU utilization along
the y axis.

For better readability, the two execution phases are marked
in blue and red, respectively. As can be seen, utilization may
vary during initialization, but reaches a steady and high value
during the actual processing phase.
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Fig. 7. Execution on ARM-Cluster.
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Fig. 8. Execution on Intel Xeon.

To compare ELPACO on the two platforms directly, we base
our numbers on (i) the total execution time (“runtime”), which
includes the startup and processing phases; (ii) the processing
time only.

Figure 9 shows energy efficiency (represented as tuples per
Joule) and execution performance (represented as tuples per
second) for our two platforms.

Most importantly, note that ELPACO fares significantly
better with respect to energy efficiency. Arguably, the energy-
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Fig. 9. Comparison of systems.

TABLE IV
COMPARISON OF SYSTEMS

Run Time Processing Time
Indicator Intel Cluster Intel Cluster
tuples per
second 821,099 630,345 919,037 753,236
average
power [W] 360.95 128.80 397.79 134.27
EDP 15.9 ∗ 106 11.0 ∗ 106 14.0 ∗ 106 6.2 ∗ 106
tuples per
Joule 2275 4563 2310 5608

delay product (energy consumption multiplied by execution
time) better describes the energy efficiency of a system (since
it considers both performance and energy consumption). In
Table IV, we listed both metrics. Observe how ELPACO can
profit from the ARM hardware and achieve a 2.5 times better
energy-delay product.

D. Scalability

A key design goal of ELPACO is to achieve (linear) per-
formance scalability with the amount of resources used for
processing. To evaluate whether we achieved this goal, we
scaled ELPACO to run on a varying number of nodes within
our ARM cluster.

Figure 10 shows the resulting throughput rates. As can be
seen in the figure, ELPACO indeed meets our goal of linear
scalability. This means that, by adding more compute nodes,
ELPACO could easily be configured to meet the throughput
demands of the experiments at CERN.
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Fig. 10. Run time of ELPACO over node count.
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Fig. 11. Efficiency of ELPACO over Node count



ELPACO, thereby, does not lose its favorable resource
efficiency characteristics. Figure 11 shows how the tuples
per Joule metric changes as the system is scaled to larger
node counts. As can be seen, already for small configurations
the system reaches its full research efficiency (and does not
degrade afterward).

VI. RELATED WORK

Stream processing emerged as a new processing paradigm
in the database community in the early millennium (Aurora [7]
is a well-known example), and distributed execution soon be-
came attractive (e.g., in the form of the Borealis [8] prototype).
These systems still lacked the ability to scale out to very
large configurations, a property that Google’s MapReduce [9]
paradigm could provide, albeit only in the form of batch-
oriented processing.

Inspired by use cases from social networks, adaptations
of the MapReduce idea to stream processing engines were
demonstrated, including Twitter’s Storm [10]. (later also
Heron [11]); Facebook’s Puma, Swift, and Stylus [12]; Driz-
zle [13]; or Apache Flink/Stratosphere [14]. Systems like
BigDAWG [15] marry stream- and batch-oriented processing.

In ELPACO, we carefully respect the characteristics of our
ARM-based, low-energy platform. Resource awareness was
also the goal of the AdaStorm system of Weng et al. [16],
which adaptively reacts to fluctuating workloads. Pohl et
al. [17] studied modern hardware characteristics in the context
of data stream processing.

Scientific applications adapt the new processing models
only slowly. The Kira system [18] uses Apache Spark in an
astronomy image processing, achieving linear scale-out similar
to ELPACO. Choi et al. [19] uses a stream-oriented processing
model to analyze Fusion Energy experiments. Within CERN,
one initiative currently aims to use Apache Spark for the
accelerator’s logging service.

VII. CONCLUSION

Our experiments have shown that our test cluster hardware
optimized for energy efficiency has with 66% less energy con-
suption a lower energy footprint, but only 15% less processed
tuples per second. Overall, we got a factor about 2.6x better
energy efficiency in tuples per joule than a state-of-the-art
Xeon dual socket reference server system. Thus, architectures
that are optimized for energy efficient processing are a good
alternative to conventional big data systems. As the system
is scalable to the needed performance, you can still benefit
from the reduced power consumption for different workload
sizes. While distributing complex applications over multi core
architectures is a challenge, Apache Storm is a very useful
framework to parallelize our processing.
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