
Towards Batch-Processing on Cold Storage Devices
Ali Hadian, Thomas Heinis

Imperial College London
{hadian,t.heinis}@imperial.ac.uk

Abstract—Large amounts of data in storage systems is cold,
i.e., Written Once and Read Occasionally (WORO). The rapid
growth of massive-scale archival and historical data increases
the demand for petabyte-scale cheap storage for such cold data.
A Cold Storage Device (CSD) is a disk-based storage system
which is designed to trade off performance for cost and power
efficiency. Inevitably, the design restrictions used in CSD’s results
in performance limitations. These limitations are not a concern
for WORO workloads, however, the very low price/performance
characteristics of CSDs makes them interesting for other appli-
cations, e.g., batch processes, too. Applications, however, can be
very slow on CSD’s if they do not take their characteristics into
account.

In this paper we design two strategies for data partitioning
in CSDs — a crucial operation in many batch analytics tasks
like hash-join, near-duplicate detection, and data localization.
We show that our strategies can efficiently use CSDs for batch
processing of terabyte-scale data by accelerating data partitioning
by 3.5x in our experiments.

I. INTRODUCTION

Data is growing at an unprecedented rate but at the same
time, not all data is accessed at the same rate. A substantial
amount of data is so cold or infrequently accessed that the cost
of keeping it on an always-on HDD is unaffordable, making
new storage solutions imperative. Cold Storage Devices, for
example, are rack-scale hard disk storage with petabytes of ca-
pacity specifically designed for cold workloads. CSD services
include Microsoft Pelican [1], Amazon Glacier1, OpenVault’s
Knox storage [2], and Facebook’s Blu-ray storage [3]. The key
restriction that distinguishes CSDs from other storage systems
is that only a few disks of a CSD cluster are spun up at the
same time, due to power and cooling limitations. For example,
only 8% of disks can be simultaneously spun up in Pelican,
and switching between disks takes 10s [1].

While the design-level restrictions of CSD, such as limiting
the number of accessible disks, greatly reduces cost of archival
storage, such restrictions make CSD an unsuitable infrastruc-
ture for processing data per se. The straightforward approach
for analyzing an archival dataset on a CSD is to copy and
run the analytic tasks outside on a cluster. Archival datasets,
however, are so big that data transfer is expensive and the
compute clusters have to be of unreasonable size to make the
data fit.

Data partitioning is a common and crucial building block
for many data system operations such as on-disk hash joins,
creating inverted index/graphs, and near duplicate removal in

1https://aws.amazon.com/glacier/

data systems (e.g., MapReduce [4]) and database engines. In
data partitioning methods, the input data is read to a buffer
(e.g. main memory or local disk), mapped to partitions and
then flushed to the target partition. When the data is located
on disk, partitioning methods assume uniform access to the
partitions, i.e., reading and writing to any partition takes the
same time regardless of where it is located on storage. In a
CSD, however, only a part of the storage (one disk group)
and thus partitions can be accessed at any time, as switching
between disk groups requires 1) spinning down the active disk
group and 2) spinning up the target disk group which takes
multiple seconds. If the partitioning method is unaware of the
CSD characteristics, it will spend substantial time waiting for
disk groups to spin up to flush or read data, rendering batch
processing on a CSD impractical.

In this paper, we study the problem of performing partition-
ing on a CSD. Our contribution is to develop two partitioning
strategies — BuffPack and OffPack — for efficient partitioning
of CSD-resident datasets. BuffPack targets at minimizing the
number of disk group switches, while OffPack leverages write
offloading, a data consolidation technique designed for power
management in data centers. The latter allows flushing data
to the ‘wrong‘ disk group (i.e., the active disk group) to
avoid a switch but eventually moves all data to its correct
destination/partition.

We additionally define analytical models to estimate the ex-
ecution time for both strategies so that the best suited strategy
can be chosen for a given CSD configuration. Results show
that both strategies are orders of magnitude faster than a CSD-
oblivious baseline. On a CSD with similar characteristics as
Pelican (1GB/s bandwidth and 12 disk groups) our strategies
partition a 100TB dataset in two days while it takes two weeks
using the baseline.

II. BACKGROUND AND RELATED WORK

A. Cold Storage Devices
Pelican. Pelican is a cold storage developed at Mi-

crosoft [1]. Multiple hardware capabilities are limited to
reduce the cost of CSD deployment, cooling, and power usage.
For example, while Pelican contains 1152 disks, only 96 can
be cooled and only 144 can be powered simultaneously. Disk
groups thus need to be spun up and down, introducing a group
switching latency of 10s.
OpenVault cold storage: OpenVault’s Knox storage is a cold
storage cluster by the Open Compute Project [2]. It consists
of multiple 2U chassis where only one disk can be accessed

at a time. A similar device is Facebook’s BluRay cold storage
where loading each BluRay disk using a mechanical arm takes
30 seconds.

B. Data Processing on Cold Storage

Research on data processing and management on cold stor-
age hardware has only just started. Skipper [5] is a framework
for query processing on CSDs with disk grouping. It combines
adaptive query processing techniques with customized I/O
scheduling and page caching to execute queries on PostgreSQL
database on CSD [5]. Further, a data layout [6] for cold storage
hardware (similar to Pelican but with a switching latency of
30s) has been proposed. Based on the access patterns, groups
of objects that are accessed together are stored on same disk
group. Nakshatra [7] is a data processing framework for batch
data analytics on tapes using pre-fetching.

C. Data Processing on Tertiary Storage

Work has also been done on tape-based tertiary storage,
i.e., tape libraries where tapes are mounted and dismounted
by a mechanical arm. Holtman et al. suggest a caching
algorithm for query processing over massive scientific data
residing in tertiary storage, where frequently accessed data
files are cached in the hard disk drive. [8]. An analytial
performance model for tertiary storage is provided in [9]. Li
et al. suggest various methods for aligning objects in tertiary
storage based on features like timestamp and object relations,
in order to minimize data access latencies [10]. Myllymaki
et al. suggest that a parallel adaptive Nested Block Join is
efficient for relational databases in tertiary environment [11].
Other work on efficient management and access ordering of
multi-dimentional data, such as large matrix data, on tertiary
storage [12], [13], [14], [15] has also been carried out.

Previous work shows that using in-memory buffering and
the data placement strategies play a crucial role in efficient data
processing on cold storage devices such as tertiary storage.
However, CSDs have different performance characteristics
compared to earlier generations of tertiary storage. For exam-
ple, while inter-drive and intra-drive seek time in tape libraries
are in order of several minutes, seek time on the active disk
group in a CSD takes only a few milliseconds.

III. DATA PARTITIONING ON A CSD

Given an input data set D containing data records, the aim
of general partitioning is to assign the records in D to N
partitions P1, P2, · · · , PN using a partitioner function. The
data is initially stored on the CSD as will the final partitions.
On a CSD, the aim further is to store each partition entirely
in one disk group. Without loss of generality we assume the
number of disk groups K to be the number of partitions N ,
i.e., K = N .

Figure 1 illustrates data partitioning on a CSD. Data records
are read from each disk group and the target partition for each
record is computed using a partitioner function running on
the computing node. The buffer (RAM) accumulates records,
grouping records belonging to the same partition Pj in the
same group Bj . Once the buffer is full, at least data belonging

… CSD
Rack

Scan / Map Scan / Map…Scan / Map

Partition
(e.g. Hash)

Partition
(e.g. Hash)…Partition

(e.g. Hash)

FREE
Buffer
(RAM)

Flush to CSD

Computing
Node

CSD Controller

Disk Group 1 Disk Group KDisk Group 2

B1 B2 … BK

Fig. 1: Data partitioning on CSD

to one partition is flushed to make room for reading more input
data.

A. Applications

Data partitioning is a ubiquitous operation in large-scale
data processing. Table I gives examples of tasks that involve
a partitioning/shuffling phase where data points are relocated
between machines or disks.

The methods we propose can be used in different CSD-
resident batch processing systems that rely on data decom-
position using partitioning, including massive-scale duplicate
detection, database sharding, and inverted index creation. They
can also be used for changing the layout of a database, e.g.,
re-sorting the data records based on a specific column. This is
a common scenario in archival systems where, for example, a
massive set of satellite images that are originally ordered by
data is to be re-sorted based on location, so that images from
the same location are co-located.

The methods we propose can also be used to adapt
the MapReduce engine for efficient execution on CSD de-
vices. In this case, our approach handles the ‘shuffling‘
mechanism of MapReduce, so that the (reducerID =
partitioner(map(k,v).key(), K) is treated as the
target disk group ID.

B. Assumptions & Parameters

In our work we assume that the data size is larger than the
capacity of a single disk group(Figure 2). Also, the partitioning
function is lightweight, e.g., a simple hash function with little
overhead is used. Further, we assume that the internal HDD
of the computing node is not used as a buffer since it is much
slower than both memory and the CSD disk group (unless
high-bandwidth storage such as NVMe or SSD-RAID is used).

The parameters for our partitioning methods and models are
presented in Table II. SM and SD are the size of main memory
and the dataset. α is the ratio of output data to raw input data,

TABLE I: Data partitioning tasks in different batch tasks

Task Operations
on Input Partitioner Operations

on Output

MapReduce [4]
Load,
map(),
Combine

Hash,
User-defined

Sort, Merge,
reduce()

N-gram Extraction /
Text Indexing [16],
[17]

Tokenize Hash Count,
Create Index

DB Sharding, Data
Localization [18], [19]

Scan, Project Hash, Range Create local
indexes / files

Near-duplicate Detec-
tion [20], [21]

Tokenize /
Split

Locality-
sensitive

Hash

Compute
similarities,

Filter

Disk Group
(4 - 50 TB)

M
em

or
y

 (2
-2

00
 G

B)

Single
Disk

(2-6TB)

CSD
(10 TB — 1 PB)

CSD-resident Data

Target Problem Domain
Input Data + Partitioned Data cannot fit in one disk group.

 (e.g. data size > 8% of CSD cap. in Pelican)

Partitioning on
Local Disk

In-memory
(No partitioning)

Fig. 2: Application domain of this paper

i.e., for X bytes of input data, α ·X is written as output. In
many applications α = 1, but α can be smaller than 1 if some
input data is filtered or bigger than 1 if, for example, data is
decompressed. Tsw is the group switch time (˜10-20 sec), Tsk
is the disk seek time (˜5-10 ms), and Tr(S), Tw(S) are the
times to read/write S bytes sequentially from/to a disk group.
α is typically known a priori but can also be computed when
partitioning (comparing the bytes read and written from/to
CSD). When flushing data to the j’th disk group, |Bj | bytes
of space become available in the buffer. The system can thus
now read |Bj |/α bytes from the CSD.

C. Baseline Method

Data partitioning starts with reading the data into the buffer
and assigning records to partitions with the partitioner. Once
the buffer is full, we switch to a disk group and flush to it to
free up memory, e.g., we switch to disk group gj and flush all
data in Bj to disk. The switch takes Tsws (or 0s if the previous
and next disk groups are the same). Reading and partitioning
then resumes for the remaining input data on gj until the buffer
is again full or the input data on gj is entirely read. Finally,
the remaining data in the buffer is flushed to each disk group.

TABLE II: Parameters of the model

Parameter Description
SD Input data size
SM Memory (bytes)
Sfree
M Free memory (bytes)
K Number of disk groups
Tsk Time of random disk seek

Tr/w(S) Time to Read/Write S bytes from/to CSD
Tsw Groups Switch time
α Output/input size ratio
Bi Buffered data for the i’th partition

The choice of the next disk group for flushing data affects
performance considerably. The baseline method is oblivious
to the underlying storage, i.e. the high latency of disk group
switching, and may use an excessive number of switches. The
baseline flushes the entire buffer when full, thus requiring a
switch to each disk group. As a result, the CSD will spend
excessive time in switching between disk groups.

Each of the K switches and subsequent flush frees the
entire memory (SM bytes). The total number of flushes is
KdαSD/SMe and the total time for flushing the buffer is
Tw(SM) + K · (Tsw + Tsk), making the execution time for
the baseline method:

TBaseline = Tr(SD) + Tw(αSD) + Tsw ·K · dαSD/SMe (1)

IV. EFFICIENT DATA PARTITIONING

A. BuffPack: The Greedy Approach

Unlike the baseline, the greedy approach does not flush
the entire buffer but instead picks the |Bj | that leads to the
best performance. The objective of BuffPack is to greedily
minimize ‘overhead per GB of data‘ between any two flushes.
If we switch from gi to gj , then we can (1) flush |Bj | bytes
to gj , taking Tw(|Bj |) and (2) read |Bj |/α bytes from gj so
that the buffer is again full (Tr(|Bj |). This process has two
overheads: two seek overheads for writing and reading (2∗Tsk)
as well as group switch time from gi to gj (Tsw). We should
thus choose the disk group with the least ‘overhead per GB‘
overhead, i.e., Bj with the best efficiency, ηj :

ηj =
Tw(|Bj |) + Tr(|Bj |/α)

Tw(|Bj |) + Tr(|Bj |/α) + 2 · Tsk + Tswi→j︸ ︷︷ ︸
overhead

(2)

Since flushing to the active disk group requires no disk
group switching (Tswactive = 0), BuffPack will flush to
the active disk group, unless if |Bactive| is so small that
∃j : ηj > ηactive. For example, for the Pelican configuration
(Tr/w(1GB) = 1sec, Tsw = 10s, Tsk ≈ 0.01s) and α = 1,
the efficiency of flushing 100MB of data into the active disk
group is ηactive = (2 · .1)/(2 · .1 + 2 · 0.01) = 91%. In this
case, BuffPack will only flush to a non-active disk group if
∃j : ηj > 91% → |Bj | > 51GB. It is trivial to show that
BuffPack always chooses the disk group with largest buffer
(which has the highest efficiency).

Assuming a uniform partitioner, records will be evenly
distributed to all partitions and before the first flush, as shown
in Figure 3(a), the buffers nearly have the same size. BuffPack
therefore flushes to the active disk group to avoid disk group
switching overhead. The flush frees 1/K of the memory buffer
for reading more data. Once the buffer is again full, data for g1
only fills 1/K2 of the entire buffer, as shown in Figure 3(b).
More flushes can follow until the size of the remaining flush-
able buffer is insignificant.

We refer to the flushes within each disk group as a super-
step, i.e., the period between two disk group switches. With
Sfree
M bytes available at the start of each super-step, the total

B3 B4B2B1
/ KSM / KSM / KSM / KSM

(a) Buffer after the first flush (i.e., buffer is full for the first time)
B3 B4B2B1 B2 B4B3

/ K2SM / KSM / KSM / KSM

(b) Buffer at the end of the second flush
B2 B3 B4

|B1| ≃ 0
1 s 2 s 3 s = (K-1) s

(c) The steady buffer state in BuffBack at the end of each flush (last four
switches: 4 → 3 → 2 → 1)

Fig. 3: Buffer status illustration

output data that can be produced without switching to another
disk group is:

Soutput
super-step = Sfree

M (1 + 1/K + 1/K2 + ...) ' K

K − 1
Sfree
M

(3)
Let {|P |} = {|B1|, · · · , |BK |} be the size of each buffer.

Without loss of generality, suppose that the partitions indices
with higher indices are larger, i.e. |B1| ≤ |B2| ≤ · · · ≤ |BK |.
It is trivial to show that for any two partitions Bi and Bj ,
if the last super-step (i.e., last flush) in gi has been earlier
than the last flush in gj , then |Bi| > |Bj |. Considering a
uniform partitioner, after K super-steps the system reaches a
steady-state. During a super-step, each partition grows by s
bytes. With 4 partitions, for example, the size of partitions
will be {0, s, 2s, 3s} (Figure 3(c)). The size of partitions is
an arithmetic sequence with common difference of s, i.e.,
{|P |} = {0, s, 2s, · · · , (K − 1) · s}. Normalizing the values
with respect to the total buffer size (

∑
|Bi| = SM), yields:

s =
2 · SM

K(K − 1)
(4)

After the steady state is reached, the size of the biggest
partition in the buffer at the end of a super-step is Sfree

M =
(K − 1) · s = 2 · SM/K. The data flushed in a super-step thus
is Soutput

super-step = 2 · SM/(K − 1). The estimated number of disk
group switches becomes:

Switches (BuffPack) =
αSD

Soutput
super-step

=
αSD · (K − 1)

2 · SM
(5)

Hence, the total execution time is:

TBuffPack = Tr(SD) + Tw(αSD) +
Tsw · αSD · (K − 1)

2 · SM
(6)

B. OffPack: Write Offloading

Write offloading temporarily writes data to the ‘wrong‘
place to consolidate data transfers [22] and save power in data
centers. We base our strategy to reduce the number of disk
group switches (and thus reduce execution time) using this
approach. In our setting, when the buffer is full, we allow the
entire buffer to be temporarily flushed (i.e., ‘offloaded‘) into
the active disk group instead of the target disk group. Once
all input is processed, the partitions flushed to the ‘wrong‘
disk group are transferred to the correct one. The output data

records for each disk group are stored together, so that data
of each partition can be read separately in the transfer phase,
which results in fewer disks groups switches

In the transfer phase, OffPack chooses the target disk group
with the most offloaded data, so that the offloaded data on
different partitions finish up together. Otherwise, the data on
some disk groups may finish far earlier than others, so that
every time OffPack carries data to the partitions with no
offloaded data, it will switch back to other disk group with an
optimal buffer. The choice of the next partition is not crucial
since there are only few disk groups in a CSD and for most
transfers, the entire buffer is filled up, hence there is not much
room for improvement.

In the partitioning phase of OffPack, assuming a uniform
partitioner, 1/K of the output is written to the correct disk
group, while (K − 1)/K is stored in the ‘wrong‘ disk group.
This requires reading the input data (SD), and writing αSD

bytes.
The second phase transfers output data not stored in the

correct disk group. The size of data to be transferred is
Soffload = K−1

K · αSD. Assuming SD >> SM the number of
switches required for moving the data is αSD/SM . As a result,
the total time for data partitioning using write-offloading is:

Toffload = Tr

(
(
K − 1

K
α+ 1)SD

)
+ Tw

(
2K − 1

K
αSD

)
+ Tsw

(
αSD

SM

)
(7)

V. EXPERIMENTAL VALIDATION

In this section, we evaluate the efficiency of the methods,
along with a HDD cluster (which has no disk switch overhead).
We simulate a CSD based on Microsoft’s Pelican [1], [23]. The
main difference between the CSD and other disk-based rack-
scale storage hardware is a ∼10-second latency for switching
between the disk groups. Whenever a switch between two
different disk groups occurs, the switching delay is added
to the execution time. Also, the time taken for read/write
operations is simulated using the configuration and expected
performance of the SMR disk on Pelican. The parameters for
the experiments are listed in Table III. We assume that each
disk group stores the same amount of input data (according
to Pelican’s middleware policies). Except for the skewness
experiment (Figure 8), we also assume that input records are
uniformly distributed between partitions.

TABLE III: Default parameters for simulation

Parameter Value
Dataset size 100 TB
Number of disk groups 12
Buffer Size 8 GB
Read/Write rate 1 GB/sec
Disk spin-up latency 10 sec

A. Sensitivity to Data Size
Figure 4(left) compares execution times, which grow almost

linear for all methods. As the experiment shows, the size of
data does not determine which method is fastest.

200 400 600 800 1000

Data Size (TB)

103

104

105

106

107

108
E

xe
cu

tio
n

T
im

e
(s

ec
 -

 lo
g

sc
al

e)

HDD Rack (No Switch)
Baseline - Total
Baseline - Switch Time
BuffPack - Total
BuffPack - Switch Time
OffPack - Total
OffPack - Switch Time

200 400 600 800 1000

Data Size (TB)

103

104

105

106

107

108

E
xe

cu
tio

n
T

im
e

(s
ec

 -
 lo

g
sc

al
e)

Baseline
Baseline - Estimate
BuffPack
BuffPack - Estimate
OffPack
OffPack - Estimate

Fig. 4: Effect of data size

20 40 60 80 100 120

Buffer Size (GB)

103

104

105

106

107

108

E
xe

cu
tio

n
T

im
e

(s
ec

 -
 lo

g
sc

al
e)

HDD Rack (No Switch)
Baseline - Total
Baseline - Switch Time
BuffPack - Total
BuffPack - Switch Time
OffPack - Total
OffPack - Switch Time

20 40 60 80 100 120

Buffer Size (GB)

105

106

107

108

E
xe

cu
tio

n
T

im
e

(s
ec

 -
 lo

g
sc

al
e)

Baseline
Baseline - Estimate
BuffPack
BuffPack - Estimate
OffPack
OffPack - Estimate

Fig. 5: Effect of buffer size

B. Sensitivity to Buffer Size
According to the analytical models, we expect the number

of disk group switches in all the three methods to be inversely
proportional to buffer size. Figure 5(left) shows the switch
time and the total execution time. For smaller buffers, e.g.,
< 25GB, OffPack performs better as disk group switching is
the main overhead. That is because OffPack requires fewer
switches as it can use the entire buffer and can thus maximize
the data moved to the correct partition for most transfers. For
larger buffers, however, OffPack is slower than BuffPack, due
to the extra cost of transferring (re-reading and re-writing) the
offloaded data. The baseline method is inferior to BuffPack,
and is also slower that OffPack for small buffers.

C. Sensitivity to the Number of Disk Groups
The number of disk groups has a key effect, as more disk

groups lead to more switching overhead. However, as shown in
Figure 6, the performance of OffPack is not affected as much
as the baseline and BuffPack. This shows that there is a great
opportunity for many applications that rely on data partitioning
to be run on CSD in which 1% (or fewer) of disks are active
at any time.

D. Sensitivity to the Group Switch Latency
The latency of switching between disk groups varies be-

tween 10 to 30 second in current CSDs. Figure 7 shows the
execution time for disk group switch latencies. The results
from disk switch latency are similar to our analysis of the
number of disk groups, as both the number of switches and
latency of switches add up to the total disk switch latency, i.e.,
total switching time = number of switches × switch latency.
OffPack performs better when the disk group switch latency
is high compared to other approaches.

20 40 60 80 100

Number of Disk Groups

104

105

106

107

108

E
xe

cu
tio

n
T

im
e

(s
ec

 -
 lo

g
sc

al
e)

HDD Rack (No Switch)
Baseline - Total
Baseline - Switch Time
BuffPack - Total
BuffPack - Switch Time
OffPack - Total
OffPack - Switch Time

20 40 60 80 100

Number of Disk Groups

105

106

107

108

E
xe

cu
tio

n
T

im
e

(s
ec

 -
 lo

g
sc

al
e)

Baseline
Baseline - Estimate
BuffPack
BuffPack - Estimate
OffPack
OffPack - Estimate

Fig. 6: Effect of the number of disk groups

0 10 20 30 40 50

Disk Group Switch Latency (sec)

104

105

106

107

E
xe

cu
tio

n
T

im
e

(s
ec

 -
 lo

g
sc

al
e)

HDD Rack (No Switch)
Baseline - Total
Baseline - Switch Time
BuffPack - Total
BuffPack - Switch Time
OffPack - Total
OffPack - Switch Time

0 10 20 30 40 50

Disk Group Switch Latency (sec)

105

106

107

E
xe

cu
tio

n
T

im
e

(s
ec

 -
 lo

g
sc

al
e)

Baseline
Baseline - Estimate
BuffPack
BuffPack - Estimate
OffPack
OffPack - Estimate

Fig. 7: Effect of disk group switch latency

E. Model Accuracy

As the analysis of our analytical model in Figures 4, 5, 6 and
7 (right) shows, the model accurately identifies the execution
time of all approaches. The fastest method can be chosen using
the hardware specification and data size, before execution.

More interestingly, both the experimental results and the
model show that the choice of the fastest method does not
depend on the data size. The fastest approach can be iden-
tified using the CSD configuration and the capabilities of
the computing node. This facilitates designing data analytics
applications on CSDs.

F. Uniform versus Skewed Workloads

The analytical model assumes that the partitioner is uniform.
This is typically the case but it is important to understand
the performance of a non-uniform partitioner. A non-uniform
workload can be the result of different effects:

1) Skewness of input data: This occurs when the input
data is not equally distributed between the disk groups.
While this may be common for small datasets, e.g.,
size<1TB, the focus of our approach is on large datasets
that need to be stored on multiple disk groups (as shown
in Figure 2).

2) Skewness of output data: This type of skewness is
caused by the partitioner function, i.e., more data is
assigned to some partitions while less is assigned to
others. For example, hashing data records based on
‘year‘ when most data belongs to the last few years will
assign most data records to a few partitions.

To model a non-uniform distribution in both input and
output data, we use a Zipfian distribution where the odds for
assigning one of N to group i of K groups is:

0 1 2 3 4 5

Input Skewnewss

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
E

xe
cu

tio
n

T
im

e
(s

ec
)

106

Baseline
BuffPack
OffPack

0 1 2 3 4 5

Output Skewnewss

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
xe

cu
tio

n
T

im
e

(s
ec

)

106

Baseline
BuffPack
OffPack

Fig. 8: Effect of skewness on performance

f(i; s,N) = (1/is)/

N∑
n=1

(1/ns) (8)

s is the skewness of the distribution. When s = 0, the
Zipfian distribution is uniform and with increasing s, each item
is more likely assigned to a disk group with smaller indices.

Figure 8 shows the effect of skewness in both input (left)
and output (right) data.

When input data is skewed and concentrated on a few disk
groups, the gain of applying BuffPack and OffPack reduces.
This is inevitable, because the system has to distribute the data
from few partitions to all disk groups, so when the system
switches from a disk group with lots of records to another
one with few input data for flushing the buffer, it cannot find
enough input data on the disk groups with few data. This
imbalance in transfer demands results in more disk group
switches.

When the skewness occurs in output data, BuffPack per-
forms slightly better compared to uniform partitioning, be-
cause the share of the biggest partition in the buffer is more
than the expected share in the uniform case (2 · SM/K).
However, higher skewness degrades OffPack’s performance,
as the buffer is more likely empty when it switches from gi
to gj for i < j.

VI. CONCLUSIONS

Our work demonstrates how CSDs can be exploited for
batch data analytics on archival data. We focus on data
partitioning — a crucial part of many batch applications
such as MapReduce, aggregation, and indexing — which is
indeed the main bottleneck when running such batch-based
applications on CSD-resident data. The suggested methods
for data partitioning on CSDs, namely BuffPack and OffPack,
reduce the disk switch overhead and in our experiments lead
to a comparable performance to data partitioning on HDD
clusters (which has no disk switch overhead). BuffPack is
based on scheduling the order of flush operations to reduce
the disk switch time, and is very effective when the computing
node has a relatively large buffer. OffPack, however, leverages
write offloading to aggregate data transfers, and is efficient
when the buffer is small. Also, OffPack can be used for CSDs
with extreme power-efficiency constraints, such that it can
keep its performance even if only 1% (or less) of the disk
groups are active at any time.

ACKNOWLEDGEMENT

The support of the EPSRC Centre for Doctoral Training
in High Performance Embedded and Distributed Systems
(HiPEDS, Grant Reference EP/L016796/1) is gratefully ac-
knowledged.

REFERENCES

[1] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass, D. Harper,
S. Legtchenko, A. Ogus, E. Peterson, and A. Rowstron, “Pelican: A
Building Block for Exascale Cold Data Storage,” in OSDI, 2014.

[2] M. Yan and L. Song, “Cold Storage Hardware v0.7,” Open
Compute Project, Tech. Rep., Apr. 2014. [Online]. Available:
http://opencompute.org/projects/storage/

[3] K. Bandaru and K. Patiejunas, “Under the Hood: Facebook’s
Cold Storage System,” Facebook, Tech. Rep., May 2015. [Online].
Available: https://code.facebook.com/posts/1433093613662262/-under-
the-hood-facebook-s-cold-storage-system-/

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in OSDI, 2004.

[5] R. Borovica-Gajic, R. Appuswamy, and A. Ailamaki, “Cheap Data
Analytics Using Cold Storage Devices,” VLDB Endow., vol. 9, no. 12,
2016.

[6] R. Reddy, A. Kathpal, J. Basak, and R. Katz, “Data Layout for Power
Efficient Archival Storage Systems,” in HotPower, 2015.

[7] A. Kathpal and G. A. N. Yasa, “Nakshatra: Towards Running Batch
Analytics on an Archive,” in MASCOTS. IEEE, 2014.

[8] K. Holtman, P. Van Der Stok, and I. Willers, “A cache filtering
optimisation for queries to massive datasets on tertiary storage,” in
DOLAP. ACM, 1999.

[9] “an analytical performance model of robotic storage libraries.”
[10] J. Li and S. Prabhakar, “Data Placement for Tertiary Storage,” in God-

dard Conference on Mass Storage Systems and Technologies. NASA,
2002.

[11] J. Myllymaki and M. Livny, “Relational Joins for Data on Tertiary
Storage,” in ICDE. IEEE, 1997.

[12] S. Sarawagi and M. Stonebraker, “Efficient Organization of Large
Multidimensional Arrays,” in Proceedings of the 10th International
Conference on Data Engineering. IEEE, 1994.

[13] L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani,
“Efficient Organization and Access of Multi-Dimensional Datasets on
Tertiary Storage Systems,” Information Systems, vol. 20, no. 2, 1995.

[14] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim,
“Multidimensional Indexing and Query Coordination for Tertiary Stor-
age Management,” in SSDBM. IEEE, 1999.

[15] B. Reiner and K. Hahn, “Optimized management of large-scale data sets
stored on tertiary storage systems,” IEEE Distributed Systems Online,
vol. 5, no. 5, 2004.

[16] J. Uszkoreit, J. M. Ponte, A. C. Popat, and M. Dubiner, “Large
Scale Parallel Document Mining for Machine Translation,” in COLING.
Stroudsburg, PA, USA: ACL, 2010.

[17] S. Huston, A. Moffat, and W. B. Croft, “Efficient Indexing of Repeated
N-grams,” in WSDM. New York, USA: ACM, 2011.

[18] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim, and
M. Sahli, “Accelerating SPARQL Queries by Exploiting Hash-based
Locality and Adaptive Partitioning,” The VLDB Journal, vol. 25, no. 3,
2016.

[19] R. Cattell, “Scalable SQL and NoSQL Data Stores,” ACM SIGMOD
Record, vol. 39, no. 4, 2011.

[20] Q. Zhang, Y. Zhang, H. Yu, and X. Huang, “Efficient Partial-duplicate
Detection based on Sequence Matching,” SIGIR, 2010.

[21] M. Najork, “Detecting Quilted Web Pages at Scale,” in SIGIR. ACM,
2012.

[22] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-loading:
Practical Power Management for Enterprise Storage,” Transactions On
Storage, vol. 4, no. 3, 2008.

[23] R. Black, A. Donnelly, D. Harper, A. Ogus, and A. Rowstron, “Feeding
the Pelican: Using Archival Hard Drives for Cold Storage Racks,” in
HotStorage, 2016.

