
An NVM-aware Storage Layout for Analytical
Workloads

Philipp Götze
TU Ilmenau, Germany

philipp.goetze@tu-ilmenau.de

Stephan Baumann
Actian Germany GmbH

stephan.baumann@actian.com

Kai-Uwe Sattler
TU Ilmenau, Germany

kus@tu-ilmenau.de

Abstract—As DRAM is reaching its scalability limit, Non-
Volatile Memory (NVM) technologies are moving more and more
into focus to meet the requirements of modern database and Big
Data systems. With this novel paradigm a lot of new opportunities
but also challenges emerge which requires a rethinking of
database system developers regarding the programming model
and data placement. In this paper, we present a design of an
NVM-aware storage layout for tables using a multi-dimensional
clustering approach and a block-like structure to utilize the
complete memory stack. Contrary to previous works, this ap-
proach focuses on analytical workloads. In a microbenchmark, its
potential for scan and point queries is investigated. We show that
our approach is able to outperform the considered competitors
by up to one order of magnitude.

I. INTRODUCTION

With the promising emergence of Non-Volatile Memory
(NVM) new opportunities and challenges for data process-
ing systems arise. In contrast to traditional databases, with
NVMs direct persistence, near-DRAM performance, and byte-
addressability only a single copy of the data needs to be
present in the system. For instance, this allows a much simpler
and faster crash recovery and avoids the detour via memory to
disk and vice versa. In the past years, many researchers have
already investigated this new paradigm. Especially persistent
index structures emerge more and more frequently since main
memory implementations do not go along with the properties
of NVM.

Current persistent structures and systems, however, lack
the feature to efficiently query records or columns on other
attributes than the key [1]–[5]. Using a full-grown OLAP
system would require a lot of installation and administration
effort as well as additional storage costs. That is why a
wide range of analytical applications would benefit from an
NVM-enabled storage layout for a table. Our intention is to
use this table at a later stage within a transactional stream
processing system [6]. It is supposed to represent a persistent
state on which both continuous as well as ad-hoc queries can
be executed simultaneously. In this case, the key used for
indexing is most likely the timestamp of the tuple. This is
not very convenient for analytical workloads which often use
other attributes than the key. The contributions of this paper
are twofold as we strive to solve the following problems:

• Which data structures are necessary to utilize the memory
stack (RAM, NVM, disk) for NVM-aware tables?

• How can we accelerate analytical queries on such tables
even on non-key attributes?

Hence, the main issue tackled in this paper is to find a suitable
storage layout with efficient data placement for analytical
workloads under the presence of NVM. For that, we have
designed a table based on multi-dimensional clustering using
a block-like structure. In a microbenchmark, we compare the
performance of our approach1 with other open-source NVM-
based data structures. Thereby, we focus on scan and point
queries (collectively referred to as lookup) to demonstrate the
potential of our approach.

II. BACKGROUND

A. NVM characteristics

The general motivation behind NVM in contrast to DRAM
is the better scalability, density, economic properties (no
refresh power), and direct persistence without detours over
memory. In comparison with flash, NVM offers the advantages
of providing near-DRAM latencies, being byte-addressable
and thus allowing fine-grained control. By combining the
advantages of both technologies, the large performance gap
between them is alleviated. Although most of the NVM
technologies are not available on the market, yet, they present
several attractive features, which are missing in either DRAM
or flash storage. Of course, these technologies also have some
drawbacks. The most important ones for our intentions are the
novel programming challenges and the read-write asymmetry
in terms of latency, which we have considered during our
design.

The best-known representatives of the NVM technology
are Phase-Change Memory (PCM) [7], Spin Transfer Torque
RAM (STT-RAM) [8], and memristors (also referred to as
RRAM or ReRAM) [9]. They promise latencies close to
DRAM and a higher endurance than flash but still lower
than DRAM. In Table I the properties of these technologies
are summarized. The read-write asymmetry of the NVM
technologies is easily recognizable, which ranges from five to
ten times slower writes than reads. In addition, writes are not
only slower but also cause cell-wearing reducing the device’s
lifetime. Another important feature is the density of these
technologies as DRAM is reaching its limit.

1https://dbgit.prakinf.tu-ilmenau.de/code/PTable



TABLE I
CHARACTERISTICS OF CURRENT MEMORY TECHNOLOGIES [2], [7], [8],

[10]–[12]

Cell size Latency r/w Endurance
NAND 4− 6F 2 25/500µs 104 − 105

DRAM 6− 10F 2 50/50ns > 1015

PCM 4− 12F 2 60/400ns 107 − 109

STT-RAM 6− 50F 2 10/50ns > 1015

Memristor 4− 10F 2 10/50ns 1011

In [13] Oukid et al. have identified the main programming
challenges for NVM such as persistent memory leaks, partial
writes or recovery. Currently, we rely on Intel’s Persistent
Memory Development Kit (PMDK)2, which already addresses
most of the mentioned issues. The issues we are focusing on
are the read-write asymmetry, data placement, and to some
extent data recovery. Overcoming the asymmetry is one of the
reasons why we chose a clustered (BDCC) block structure,
which we describe in Section IV.

B. Bitwise Dimensional Co-Clustering

BDCC [14], provides a multi-dimensional clustering frame-
work including data structures, data access, and processing
techniques that have proven to be highly beneficial for an-
alytical workloads. In the original work, the focus was on
disk access. However, BDCC has proven to provide efficient
access to millions of small groups and this way can be relevant
for NVM with its capability of byte addressing data. At the
same time, its support for multiple dimensions enables efficient
query processing for more than just the key attribute(s). Being
developed for column stores and, thus, decoupling indexing
from clustering it can easily be transferred to main memory
where data offsets can be calculated rather than relying on an
additional translation layer.

BDCC, in a nutshell, stores similar tuples close to each other
based on common properties mapped to an artificial clustering
key. Such a BDCC key value is created by bit interleaving
binary representations of the chosen clustering dimensions. In
order to efficiently point and range query dimensions, each
dimension is sorted and mapped (according to this sort order)
to a finite sequence of integers starting from 0. Consequently,
multiple lookups on dimension attributes can be executed as
a set of bit operations on the clustering key, proving very
efficient selection pushdown and, in combination with out of
order data retrieval, close to zero cost data reordering based on
the various dimension sort orders. For bit-interleaving of the
BDCC clustering key, different strategies such as round-robin
or major-minor, but also any other interleaving, are possible
and an optimal choice may actually depend on the data set
and/or the workload.

The term co-clustered in this context refers to the con-
tiguously multi-dimensional storage of tuples across relations
and based on their foreign key relationships. In our case we
consider just a single table, thus this focus is of no importance
in this work. Although we have chosen BDCC due to its

2http://pmem.io/pmdk

proven flexibility and efficiency, our design will not be limited
to this clustering approach.

III. RELATED WORK

There are already several publications seeking for appropri-
ate data structures on NVM. FOEDUS [2] covers multiple
aspects of designing an OLTP engine on future hardware.
Their data structures and algorithms are designed to be mas-
sively parallel under the assumption of the existence of NVM.
The implementation of FOEDUS is the first and only major
implementation to cover the aspects of many cores in com-
bination with NVM. SOFORT [3] is a hybrid NVM-DRAM
transactional storage engine supporting transactional as well as
analytical workloads. The tables are organized column-wise
and the main part of the data is kept in a read-optimized
structure to accelerate OLAP performance. Additionally, a
write-optimized delta storage is used for OLTP workloads
which is merged periodically into the main part. Although the
authors state that the engine is intended for mixed workloads,
they rather focused on OLTP and recovery performance. Our
focus, on the other hand, is on analytical queries.

Apart from these data processing engines, a couple of
persistent index structures for NVM have been published.
Venkataraman et al. [5] propose a single level storage hi-
erarchy and present the idea of consistent and durable data
structures. Their main use case is the B+-Tree, which is also
addressed in depth by Chen et al. in [1]. This approach focuses
on optimizing the write performance for B+-Trees in the
presence of asymmetric read-write latency and the issue of
wearing memory cells. In [4] the authors present a hybrid
solution for a persistent and concurrent B+-Tree, namely
FPTree. For that, they hold all leaf nodes within persistent
memory and inner nodes are placed in DRAM. They strive to
achieve nearly the same speed as a DRAM-based B+-Tree. For
that, they use various techniques to accelerate tree operations
and recovery. The crucial part is the usage of fingerprints in
the leaf nodes to reduce the number of keys probed when
searching for a key. Since these are index structures, they offer
no analytical operations other than basic point queries on the
key. Our structure, on the other hand, allows efficient arbitrary
lookups for both key and non-key attributes.

In addition to the NVM-specific solutions, other approaches
such as bitmaps, zonemaps, and Column Imprints [15] exist,
which also aim to accelerate analytical queries. Since our
table is supposed to be usable for both streaming and ad-
hoc processing in the future, it is similar to Lang’s et al.
Data Blocks [16] which are intended for hybrid OLTP and
OLAP database systems. They use a PAX-like structure where
the blocks are horizontally partitioned per attribute in so-
called mini pages and all columns of a tuple remain in the
same block. These blocks are further enhanced with small
materialized aggregates (SMAs) [17], a light-weight index,
and compression to achieve much better cache performance
and accelerate table scans.



IV. ANALYTICAL TABLE STRUCTURE

A. Access patterns

As we focus on analytical workloads it is important to
discuss the expected access patterns of such workloads be-
forehand. Typically, there will be many more read than write
operations. We mainly aim to support fast range scans and
random point queries. Since our table represents not just a
key-value store, it has to allow for mixed attribute ranges and
queries on attributes other than the key. Additionally, it needs
to be optimized for columnar accesses where the user is only
interested in specific attributes.

B. Objectives

Justified by the NVM characteristics and the access patterns
for analytical workloads described before, an appropriate data
structure is required. We aim to achieve a better performance
than typical table structures in modern database systems which
are using a combination of a persistent table stored on disk and
a volatile version hold in memory. Simultaneously, we strive
to reduce writes to NVM whenever possible when operating
on these tables to overcome the read-write asymmetry and
to avoid early cell wearing. This is especially important for
the data manipulation operations, namely insert, delete, and
update as well as the general data organization. To achieve
efficient OLAP performance a read-optimized data structure
is necessary. To provide a high query performance as well as
the possibility to swap cold data in case of an NVM space
shortage, the approach covers a three-layer memory hierarchy.
This is especially important as we expect the first generations
of NVM on the broad market to have higher latencies than
DRAM and lower capacities than flash (also considering the
cost per GB).

C. Block structure

In order to utilize NVM and disk together for persistence,
we decided for the common denominator of a block-like
structure. This also achieves data locality, which in turn is
beneficial for exploiting caches and prefetching mechanisms.
Because the bytes of a block in NVM can be accessed
individually this does not present a restriction. Similar like
Data Blocks [16], we utilize a PAX-like structure and enhance
it with SMAs. For the time being, the blocks do not make use
of a light-weight index and compression but it could be part of
future work. In Figure 1 our layout of such a block is shown.

BDCC_Range Count Free SMA + data offsets

0 8 12 14 14 + 4 * n

- fixed

Header

Minipage 1
(Int / Double)

Minipage 2
(String)

Minipage n

min1 max1 data1 . . .

min offset2 max offset2 string offsets2 . . .

. . . data2

. . .

32 KB

. .. .

Fig. 1. Clustered block structure

The first fields represent the header consisting of the clustering
key range, tuple count, and free space of this block. After that,
the offsets to the attributes SMAs and data values are noted
which are calculated based on the tuple’s number and types
of attributes. The body then is composed of the mini pages
for each attribute. Currently, three basic types are supported:
integer, double, and string values; where the string type has
to be organized differently due to its variable length property.
For the size of each cluster, we have chosen 32 KB for the
time being as this is the minimum size limit before reading
from solid state drives becomes inefficient [18]. Apart from
that, this matches with today’s typical L1 cache sizes which
can be useful when accessing the same block multiple times.

D. Clustering

In OLAP queries, often other attributes besides the key
are used for lookups. Instead of holding additional secondary
indexes that would cost more write performance within NVM
or recovery effort when using RAM, our approach is to cluster
similar tuples together within the blocks. To achieve this,
our approach is based on BDCC to allow multi-dimensional
accesses and accelerate analytical workloads. We could have
used also other clustering methods, but BDCC has proven
itself quite effective [14] and is the most flexible approach.
Through fast bitwise operations, one can massively accelerate
queries. As a side effect, compression is also made possible
since similar values are stored close to each other. The clus-
tered blocks are sorted by the BDCC ranges and form a linked
list. However, their respective contents are heap organized.
This results in less writes for re-sorting and because of NVM’s
fast random access, there is no big disadvantage for scans.

E. Storage layout

In Figure 2, this idea of a table based on Data Blocks and
BDCC within the memory hierarchy is sketched. The structure
consists of three components: the table metadata, an index
structure, and the actual table data distributed among NVM
and disk. The metadata is the entrance object to the persistent
area and holds a persistent pointer to both the index structure
as well as the first block. In addition, the schema and clustering
information is stored here and needs to be specified by the user
on table creation. For the index, no specific structure is fixed.
Currently, it is a basic NVM-persistent B+-Tree version. An
alternative could be, e.g., a volatile variant which in turn has to
be recovered in case of a failure. The value of an index entry
here is a specific class which we call PTuple that consists of
a persistent pointer to a block plus the offsets of all attributes.
Frequently used persistent pointers (or paths) are also cached
to avoid pointer chasing. As for now, a persistent pointer is
an NVM-only pointer and a transcending variant for disk and
NVM will be part of future work. A simple solution would
be to use a boolean field combined with a union structure (for
the different pointer types). A further point of discussion is
the distinction between hot and cold blocks, i.e. whether they
should differ in the structure or just the location. Moreover,
one could keep the metadata and the links of the data nodes



Index

Data Node
clustered block
keys
histogram

Data Node
clustered block
keys
histogram

Data Node
clustered block
keys
histogram

Data Node
clustered block
keys
histogram

Data Node
clustered block
keys
histogram

table metadata
index
data nodes
table info
BDCC info

N
VM

RA
M

Di
sk

hot blocks

cold blocks table data

persistent pointer
PTuple

table info

BDCC info

Insert Update Delete Select Scan GetByKey table operation

Fig. 2. Storage layout of a table for analytical workloads

always within NVM and only move the 32 KB arrays as soon
as necessary. In the current state, however, all structures are
stored in NVM. Therefore, and due to the usage of atomic
transactions, no recovery is required.

F. Operations and optimization

Our table currently supports the basic data manipulation
operations, namely insert, delete, and update, as well as
fundamental analytical operations such as range scans, point
queries on the key, and other selections with arbitrary pred-
icates. Intermediate results are kept in DRAM which is why
these operations are located at this layer in the figure. When
appending a new tuple its BDCC value is calculated and it
gets inserted in both the appropriate block covering this value
and the index. This is especially useful as the data is organized
by the key among other specified dimensions and thus allows
fast appends. This process is additionally accelerated because
the entries within a block are unsorted. Due to NVM, the
tuples can be directly persisted and read later without the
detour via memory to disk and vice versa. A block is split
as evenly as possible as soon as it is full. This is done based
on the BDCC range distribution using a histogram. The index
is mainly used for efficient single tuple accesses or custom
predicate scans. With our clustered block structure we want
to achieve especially fast and robust range scans. For that, the
number of blocks necessary to access must be limited. If the
attributes used within the predicate are part of the clustering
they can be masked with BDCC and compared with the block
headers. For other attributes, the SMAs can be used instead. In
this case, we do not use the index but a separate block iterator
to collect all candidates and prune non-intersecting blocks. To
further accelerate this process, one could also make use of an
additional block index, such as a binary search tree.

G. Summary

In summary, the NVM properties were considered as fol-
lows. In order to counteract the asymmetry, we have made
various design decisions. The most essential are the use of
clustering instead of secondary indexes and the heap organi-
zation of the block contents. Intermediate results are stored in

DRAM to save unnecessary NVM write operations. There is
also the possibility of compression, which trades the number
of bytes to write for a longer processing time. Due to the direct
persistence of NVM, the use of atomic transactions, and by
keeping all necessary data in NVM, no recovery is required.

V. EVALUATION

The following microbenchmark is intended to highlight the
potential of our approach over other NVM-based solutions
and the commonly used DRAM + disk approach. Here, we
concentrate on reading performance and analytical workloads.
We expect faster lookup operations than our competitors,
especially for queries on non-key attributes. As comparative
systems for the evaluation, we considered open-source NVM-
based data structures such as pmemkv3, a ctree4, and our own
B+-Tree version based on NVM. This tree is currently also
used as index within our table implementation. Apart from
these NVM-based competitors, we have further added an upper
and lower baseline. Due to its wide usage in the research
community as a persistent key-value store, RocksDB5 was
added as a disk-based reference system. It is important to
point out that RocksDB uses the disk (SSD) for persistence
and simultaneously keeps a transient version of the data
in memory. Finally, we also included a DRAM-based B+-
Tree as a reference transient implementation. We presume
the performance of the NVM-based approaches to be located
between these two baselines.

A. Setup

For the implementation, we currently rely on emulation of
NVM with the help of memory mapping. This means that a
part of the memory is permanently reserved and treated as
persistent memory. The mounted file system on this region is
ext4 with DAX6 support. As a result, load and store operations
can directly access the persistent memory without the detour
via the OS cache (paging). A disadvantage of this type of

3https://github.com/pmem/pmemkv
4Part of Intel’s PMDK examples
5http://rocksdb.org/
6https://www.kernel.org/doc/Documentation/filesystems/dax.txt



102 103 104 105 106

Number of tuples in table

0.1

0.2

0.3

0.4

0.5

0.6
A

v
e
ra

g
e
 t

im
e
 [

s]

256B
512B

1KB
2KB

4KB
8KB

16KB

Fig. 3. Point queries for varying index node sizes

emulation is that the read-write latency, unlike the expected
NVM properties, is symmetric. We aim to utilize the real
hardware as soon as it is available on the market. To address
the persistent memory we use the C++ bindings of PMDK.

The tests of our microbenchmark are executed on a single
node with an Intel Core i7-7500 processor running at 3.50
GHz. Each of the four cores features a 32 KB first level
data and instruction cache as well as a 256 KB L2 cache.
Furthermore, they all share a 4 MB L3 cache. The machine
provides 16 GB of DRAM from which 4 GB are mapped
as persistent memory. The DRAM latency measured with the
Intel Memory Latency Checker7 is 90ns.

We focused on comparing read-only settings, namely scan
and point queries. For the scan queries, the selectivity was
varied and for the point queries different table sizes were
chosen to test for scalability. Since we strive for structured
data, the values are always tuples of four elements (<int, int,
string, double>) and an integer key (same as the first attribute).
Most of the measurements do not contain any serialization,
deserialization, or dereference overhead. The only exception
occurs during the non-key queries for some solutions, such as
RocksDB. There, the deserialization was necessary to access
the individual attributes of the value. All tests were compiled
with GCC 7.2.1.

B. Point query

The following point queries are all based on the key. In a
preliminary experiment, we varied the node sizes of our index
structure to determine the best performing configuration. The
results are shown in Figure 3. The minimum size for a node is
256 Bytes. This is due to the size of the meta structure and the
PTuple with four elements. The diagram shows that the best
size ranges between 256 and 1024 Bytes. Some lines, e.g.,
for 2 KB and 16 KB, are not quite linearly despite multiple
runs. This is probably because for some table sizes a better
index state is created. We decided for a node size of 1 KB as
the performance difference is only marginal. In addition, this
avoids too many allocations and splits during the insert when
using smaller sizes.

The node size of 1 KB is applied to our own approach
and the NVM-based B+-Tree. For the transient version, 4 KB
has revealed the best performance. This is most likely due

7http://www.intel.com/software/mlc

102 103 104 105 106

Number of tuples in table

0

1

2

3

4

A
v
e
ra

g
e
 t

im
e
 [

s]

bdcc+nvm
btree

p-btree
rocksdb

ctree
pmemkv

Fig. 4. Point query

to the OS cache using a 4 KB page size. Figure 4 presents
the comparison between the competitor systems. As it can
be seen, our approach outperforms RocksDB, pmemkv, and
the ctree. RocksDB and pmemkv, moreover, do not seem to
scale as good as the other data stores. Since the persistent B+-
Tree version is used within our table, a similar performance
is achieved. The difference is that the BDCC approach uses a
PTuple, whereas the plain tree uses C++ tuples. The transient
B+-Tree (14-25 ns) clearly outperforms the other solutions.
However, this obviously does not provide the desired persis-
tence.

C. Range scan
For the range scan tests, we considered typical key based

scans as well as scans using non-key attributes. Especially the
latter experiment is of essential interest. As mentioned before,
our future use case shall exploit this structure to represent
persistent states in a transactional stream processing system.
The key is certainly the timestamp and, thus, usually not the
target of the range predicate. In this benchmark, we used the
first (integer) and fourth (double) field for the range predicates.
The ranges were chosen in a way that they overlap by 50
percent and result in the same selection as the key based scans.
All scan operations were executed on the structures with 1
million tuples inserted beforehand.

As stated before, the block size was chosen to be 32 KB
due to efficient SSD I/O operations and the L1 cache size.
Nevertheless, we evaluated the best block size for an NVM
only (for persistence) setting. Thus, in another preliminary
experiment, the block size was varied while running non-key
range scans. Figure 5(a) shows the average execution time of
this query. Interestingly, the scans consistently perform best
for 16 KB and 32 KB - in the figure both lines overlay each
other. Consequently, a 32 KB block size is a good choice for
this workload on both SSDs and NVM.

Considering range scans, our approach utilizes two types
of iterators. The first is the block iterator using a preceding
pruning mechanism as described in the previous section. The
second is the iterator of the underlying index. In the fol-
lowing experiments, the competitor systems were additionally
included. pmemkv does not provide a scan operation or an
iterator, therefore, only its point query performance could be
measured. RocksDB and the ctree were also omitted in the
graphics, as they performed a magnitude worse than the other



0% 5% 10% 15% 20%
Selection

0

10

20

30

A
v
e
ra

g
e
 t

im
e
 [

m
s]

2KB
4KB

8KB
16KB

32KB
64KB

(a) Varying block sizes using non-key attributes

0% 5% 10% 15% 20%
Selection

0

20

40

A
v
e
ra

g
e
 t

im
e
 [

m
s]

bdcc+nvm(b)
bdcc+nvm(i)

btree
p-btree

rocksdb

(b) Using the key

0% 5% 10% 15% 20%
Selection

0

10

20

A
v
e
ra

g
e
 t

im
e
 [

m
s]

bdcc+nvm(b)
bdcc+nvm(i)

btree p-btree

(c) Using non-key attributes

Fig. 5. Range scan on a table of one million tuples (type: <int, int, string, double>)

solutions. The results of the key and non-key range scans are
visualized in Figure 5(b) and Figure 5(c), respectively.

Although our focus was especially on queries with non-
key attributes, the BDCC based table implementation performs
similar or even better than the competitor systems. As the ctree
does not support range scans, all the scan queries degenerate to
full-table scans (≈ 105ms). The same applies for RocksDB
(≈ 275ms) and the B+-Trees in the case of scans on non-
key attributes. Our structure using the block iterator performs
within the same range w.r.t. non-key execution time as the
B+-Tree and, thus, provides persistence and DRAM perfor-
mance simultaneously. However, the execution time increases
linearly with the selection percentage. This is because with
an increasing tuple range the pruning step can exclude fewer
blocks. In this case, the index iterator gets faster still achieving
the same performance range as the transient and persistent B+-
Tree. Thus, the choice of iterator highly depends on the table
size and selectivity. For larger volumes (>1M tuples) and a
low selection amount, the block iterator is most likely to be
preferred over the index utilization. It is expected that with a
larger table size, the intersection point will move further to
the right. This is because the index structures take longer for
a complete scan, regardless of the selection. Consequently, the
system would benefit from a cost-model which autonomously
decides on the appropriate iterator. All in all, it has been shown
that our approach can keep up with and even surpass our
competitors in all aspects considered.

VI. CONCLUSION

In this paper, we introduced a clustered NVM-aware storage
layout for analytical workloads. The results of our microbench-
mark show that most of the considered persistent data stores
lack the possibility to efficiently access entries based on non-
key attributes. On the other hand, our storage layout for a
table has proven to be very suitable for modern analytical
performance requirements. Even for key-based queries, our
structure performs similarly to its competitors and partly even
outperforms them. In the near future, the intention is to
further extend the microbenchmark to an exhaustive NVM
based data store benchmark for OLTP as well as OLAP
workloads. Furthermore, the presented solution still has a lot of
optimization potential. For instance, BDCC could be exploited
with more bitwise operations and various clustering options.
Moreover, the data placement and node sizes within specific
scenarios need to be evaluated in more detail. Finally, the

support for concurrent access is currently missing and the
structure should be enhanced with, e.g., MVCC.

ACKNOWLEDGEMENT

This work was partially funded by the German Research
Foundation (DFG) in the context of the project ”Transactional
Stream Processing on Non-Volatile Memory” (SA 782/28) as
part of the priority program ”Scalable Data Management for
Future Hardware” (SPP 2037).

REFERENCES

[1] S. Chen and Q. Jin, “Persistent B+-Trees in Non- Volatile Main
Memory,” PVLDB, vol. 8, no. 7, pp. 786–797, 2015.

[2] H. Kimura, “FOEDUS: OLTP Engine for a Thousand Cores and
NVRAM,” in SIGMOD, 2015, pp. 691–706.

[3] I. Oukid, D. Booss et al., “SOFORT: A Hybrid SCM-DRAM Storage
Engine for Fast Data Recovery,” in DaMoN, 2014, pp. 8:1–8:7.

[4] I. Oukid, J. Lasperas et al., “FPTree: A Hybrid SCM- DRAM Persistent
and Concurrent B-Tree for Storage Class Memory,” in SIGMOD, 2016,
pp. 371–386.

[5] S. Venkataraman, N. Tolia et al., “Consistent and Durable Data Struc-
tures for Non-Volatile Byte- Addressable Memory,” in USENIX, 2011,
pp. 61–75.

[6] I. Botan, P. M. Fischer et al., “Transactional Stream Processing,” in
EDBT, 2012, pp. 204–215.

[7] B. C. Lee, E. Ipek et al., “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” in ISCA, 2009, pp. 2–13.

[8] M. Hosomi, H. Yamagishi et al., “A Novel Nonvolatile Memory with
Spin Torque Transfer Magnetization Switching: Spin-RAM,” IEDM
Tech. Dig, vol. 459, 2005.

[9] D. B. Strukov, G. S. Snider et al., “The missing memristor found,”
Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[10] S. Mittal and J. S. Vetter, “A Survey of Software Techniques for Using
Non-Volatile Memories for Storage and Main Memory Systems,” IEEE
TPDS, vol. 27, no. 5, pp. 1537–1550, 2016.

[11] H. Saadeldeen, D. Franklin et al., “Memristors for Neural Branch Predic-
tion: A Case Study in Strict Latency and Write Endurance Challenges,”
in CF, 2013, pp. 26:1–26:10.

[12] T. Wang and R. Johnson, “Scalable Logging through Emerging Non-
Volatile Memory,” PVLDB, vol. 7, no. 10, pp. 865–876, 2014.

[13] I. Oukid, D. Booss et al., “Memory Management Techniques for Large-
Scale Persistent-Main-Memory Systems,” PVLDB, vol. 10, no. 11, pp.
1166–1177, 2017.

[14] S. Baumann, P. A. Boncz, and K. Sattler, “Bitwise Dimensional Co-
Clustering for Analytical Workloads,” VLDB J., vol. 25, no. 3, pp. 291–
316, 2016.

[15] L. Sidirourgos and M. L. Kersten, “Column Imprints: A Secondary Index
Structure,” in SIGMOD, 2013, pp. 893–904.

[16] H. Lang, T. Mühlbauer et al., “Data Blocks: Hybrid OLTP and OLAP
on Compressed Storage using both Vectorization and Compilation,” in
SIGMOD, 2016, pp. 311–326.

[17] G. Moerkotte, “Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing,” in VLDB, 1998, pp. 476–487.

[18] S. Baumann, G. de Nijs et al., “Flashing Databases: Expectations and
Limitations,” in DaMoN, 2010, pp. 9–18.


