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Abstract—Modern server systems with large NUMA architec-
tures necessitate (i) data being distributed over the available
computing nodes and (ii) NUMA-aware query processing to
enable effective parallel processing in database systems. As these
architectures incur significant latency and throughout penalties
for accessing non-local data, queries should be executed as close
as possible to the data. To further increase both performance and
efficiency, data that is not relevant for the query result should
be skipped as early as possible. One way to achieve this goal is
horizontal partitioning to improve static partition pruning.

As part of our ongoing work on workload-driven partitioning,
we have implemented a recent approach called aggressive data
skipping and extended it to handle both analytical as well as
transactional access patterns. In this paper, we evaluate this
approach with the workload and data of a production enterprise
system of a Global 2000 company. The results show that over
80% of all tuples can be skipped in average while the resulting
partitioning schemata are surprisingly stable over time.

I. PARTITIONING & NUMA

Modern enterprise applications require database systems
that handle both transactional day-to-day workloads as well as
increasing analytical workloads (also called mixed workloads,
OLxP, or HTAP, cf. [1]). One of the main promises of
these new systems is to enable real-time analytics on the
most recent transactional data (cf. [2], [3]) without expensive
data warehouse installations and long-running ETL (extract,
transform, and load) processes. Two key factors enabling
these systems recently have been (i) vastly increased DRAM
capacities and (ii) main memory-resident databases [4].

To meet the increasing demand for large DRAM capacities,
hardware vendors developed new server architectures. Recent
scale-up multi-socket systems include multiple CPUs with
dozens of cores on a single blade. One characteristic of
these systems is that the access performance to main memory
depends on the location of the particular DRAM module to
access. As each DRAM module is directly attached to a CPU,
accessing non-local DRAM modules incurs additional costs.
Such an architecture is called a Non-Uniform Memory Access
architecture (NUMA, see Figure 1(a)) where non-local DRAM
is accessed via the QPI connected to another CPU (i.e., a hop).
Systems such as the SGI UV300H, depicted in Figure 1(b),
even expand the system to span multiple blades. Here, the QPIs
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of different blades are connected via a hardware component
called HARP (for more details see [5]). While the UV300H
is optimized for low latency connections, even larger systems
such as the SGI UV2000 add substantial latencies that are
up to an order of magnitude higher when accessing non-local
memory, cf. [6]. The higher the number of hops to access data —
and with that higher latencies and lower bandwidths — the larger
the potential for mechanisms avoiding unnecessary accesses to
distant data and reducing inter-node communication.
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Fig. 1. DRAM access paths in NUMA architectures (FMC-like notation).

Database systems do not need to be modified in order
to run on NUMA architectures as these systems provide a
fully cache-coherent system that behaves like a single socket
system. However, to fully exploit the performance of NUMA
architectures, multiple components (i.a., storage manager, query
planner, operators) of a database system need to be adapted to
counter NUMA effects in order to achieve optimal performance.
Kissinger et al. [6] propose treating NUMA systems like
distributed systems since communication needs to be minimized
and processing should be data-local in order to fully exploit
the system. Simple approaches that distribute small horizontal
partitions round-robin enable highly parallel processing, but
leave much room for improvement, cf. [7].

Psaroudakis et al. [8] compared data placement strategies for
SAP HANA, an in-memory column store. The authors found
that physical partitioning (PP), where each partition is self-



contained with local dictionaries and indices, to perform best for
a wide range of scenarios. Further, they mention the potential
pruning possibilities with physical partitioning. Nonetheless,
the authors recommend another approach as they found PP
to (i) be slow during repartitioning and (ii) increase memory
consumption due to local dictionaries. We disagree with both
points as we found (i) the proposed partitioning scheme for
real-world systems presented in this paper to be surprisingly
stable (see Section IV) and (ii) the memory overhead of local
dictionaries to be neglectable (between -2% and 5% increase for
the evaluated enterprise system). Consequently, we see physical
partitioning to distribute table data to the available NUMA
nodes as the most promising data distribution strategy which
further allows efficient NUMA-optimized task scheduling [8].

Horizontal Partitioning for HTAP Systems

We study HTAP-optimized and DRAM-resident databases on
large scale-up servers. As previously mentioned, besides query
execution strategies and task scheduling for NUMA systems
(cf. [9]), data placement is one of the most important aspects.
We investigate various horizontal partitioning approaches and
how they perform compared to interleaved data allocations,
cf. [8]. The goal is to physically partition data horizontally in
order to distribute the data over the NUMA nodes and improve
data locality. Tuples can only be stored in one partition at a
time. Partitioning or declustering [10] enables static partition
pruning (or partition elimination), where partitions are skipped
when the database can logically rule out that a partition
contains tuples that qualify for the given query predicates [11].
As such, partition pruning does not only improve runtime
performance but also improves additional aspects such as
the energy efficiency by reducing the data that needs to be
processed to answer a query while ensuring correct results.

Horizontal partitioning is well studied, especially in the
context of transactional OLTP systems. Such systems often
hash-partition on a primary key attribute to distribute the
load and enable partition elimination for point queries [12].
However, for HTAP workloads with analytical loads, hash
partitioning is often not the best choice: (i) it does not
support range queries and (ii) HTAP systems are usually not
dominated by point accesses. Hence, our goal is to find a
single partitioning scheme that suits both OLTP-typical point-
access queries as well as sequential OLAP queries. Finding
a suitable range partitioning scheme, however, is challenging
as both the workload as well as data characteristics have to
be considered to avoid unbalanced data or access distributions.
Moreover, range-partitioned schemata often deteriorate over
time, e.g., on date(-correlated) attributes. Nonetheless, due to
the requirements of analytical queries in HTAP systems, we
consider round-robin and hash-based partitioning as inept.

Our objective is to determine a partitioning scheme that
(1) partitions the data set into a given number of partitions
(e.g., the number of NUMA nodes in the system) and (ii) is
optimized for efficient partition pruning given the database’s
workload. Horizontal partitioning has been traditionally applied
to warehouse systems because the primary access path (i.e.,

linear scans) largely profits from partition pruning. This is not
directly the case for OLTP systems, where the primary access
path is usually an index scan. Avoiding unnecessary accesses
to partitions with partition-local indices might not improve the
average query runtime, but it can significantly lower the overall
load of the system or increase throughput. Throughout this
paper, our focus lies mainly on the aggressive data skipping
approach by Sun et al. (Section II) and its pruning rates and
less on runtime performance.

To evaluate our implementation of aggressive data skipping,
we use the data and workload traces of a production enterprise
system. This system is an installation of a recent SAP ERP
version of a Global 2000 company (cf. [13] for more details
about the traced system). A particularly interesting aspect is
that the traced system is one of the first systems to exhibit both
transactional workloads as well as analytical workloads [1].
Partitioning such a system is particularly challenging as OLTP
and OLAP queries have vastly different characteristics.

II. AGGRESSIVE DATA SKIPPING

In this paper, we present our experiments with an implemen-
tation of the aggressive data skipping approach (or SOP for
skipping-oriented partitioning) by Sun et al. [14]. We consider
this approach to be one of the most promising approaches
for horizontal — pruning-optimized — partitioning which finds
efficient partitioning schemata by analyzing the workload while
being reasonably fast to create.

The aggressive data skipping approach has been developed
to add a fine-granular partitioning level (creating so-called
blocks) on top of horizontal partitioning. Using the created
metadata, certain blocks can be dynamically pruned.

From our point of view, the addition of such meta data
structures is not necessary. Hence, we decided to use the
generated features to physically partition the data. The main
reason was that the eventual merging phase allows adjusting the
number of partitions relatively freely, enabling us to physically
partition and distribute the data on our large NUMA system.
As the approach potentially yields partitioning schemata with
an arbitrary number of criteria, typical composite range-based
schemata as used by most databases are not sufficient.

The Process. As a first step, the database workload is
parsed in order to obtain representative filter predicates, so-
called features, which are conjunctive filter predicates that
describe tuples. Similar predicates can be merged when one
predicate subsumes another. Using these features, SOP scans
the relation and creates feature vectors that characterize each
tuple. Eventually, the feature vectors are clustered and merged
using a cost model-based merge function to form the partitions.

III. IMPROVEMENTS FOR HTAP SYSTEMS

During the evaluation of the traced SAP ERP system, we
made three major observations. First, for complex real-world
systems with data being accessed through different applications
with different intentions, the limitation to partition only by one
dimension turned out to be too often insufficient, because filter
attributes often differ for OLTP and OLAP queries. Second,
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Petri net of adopted aggressive data skipping process (FMC notation). Instead of handling all query types equally, transactional and analytical

workloads are separately processed and optimized. Eventually, both schemata are merged.

while SOP expects queries in conjunctive normal form (CNF),
the queries of enterprise systems are often formulated in a
disjunctive normal form (DNF). Third, the inherit misbalance
in the number of queries of different classes (in this context,
OLTP and OLAP queries) leads to suboptimal results. In this
section, we will discuss how we adapted Sun et al.’s approach
towards the characteristics of HTAP enterprise systems.

A. Query Reformulation

Most enterprise systems do not expose the actual database
engine beneath by providing an abstraction layer (e.g., SAP’s
Open SQL, cf. [15]). Comparable to Hibernate?, such ORM
layers automatically generate SQL queries. Those queries often
select a disjunctive list of items, where each item is described
via conjunctive predicates. In the traced enterprise systems, we
found queries with up to 350 disjunctions of conjunctions of
predicates. In contrast, SOP has been implemented assuming
queries in the conjunctive normal form as they better matched
their examined OLAP queries.

To handle the DNF-dominated queries of the enterprise
systems, we decided to simply split each disjunctive query
into multiple queries. This is a trade-off because, from a query
optimizer’s perspective, it does not reflect the actually executed
workload as a reformulation to a conjunctive form is usually
preferable. However, as a reformulation to DNF is known to be
computationally expensive, we decided to split queries to keep
the analysis runtime manageable. This way, we do not need
to change the feature extraction process and traded this gain
for a more sophisticated subsuming process. We tracked split
queries and rejoin them afterward in order to decide whether
the original query is prunable for a given partitioning scheme.

B. Combining HTAP Query Classes

Analyzing the SAP ERP system, we found that the original
data skipping approach falls short in handling different query
classes. In HTAP systems, the majority of queries are transac-
tional queries which process relatively few tuples and mostly
filter on attributes of the primary key. In contrast, analytical
queries process much larger numbers of tuples and often filter

2Hibernate - Java persistence framework: http://hibernate.org

on attributes that are not part of the primary key. As Sun
et al.’s cost model is optimized for the majority of queries
(which might already be sufficiently covered by index accesses
anyways), analytical queries are mostly neglected.

To separate the classification of queries (in our case OLTP
and OLAP, but it could be any classification) from the
actual optimization of the partitioning scheme, we decided
against weighting queries or artificially changing the execution
times. We added a preprocessing step that first separates the
workload into different classes of query types. We differentiated
analytical queries by their average running time, but it is also
possible to classify them based on the filters’ selectivity or the
join/aggregation costs. After we classified each query, we run
the whole process independently for both classes. Eventually,
the locally optimized partitioning schemata are merged into
one aggregated scheme. We found the results of this process to
be promising (see Sec. IV). As the feature processing for all
classes can be done with one pass-through, runtime is barely
affected. The whole adapted process is depicted in Figure 2.

IV. EVALUATION

In this section, we present our evaluation using data and
workload of the traced enterprise system. We traced the system
three times, each time for several days, resulting in several
million traced queries (for more details see [13]). We evaluated
the workload for the ACDOCA table, which is the central table
for the financial and controlling modules of an SAP ERP
system and exhibits the highest analytical load.

A. Synthetic Database Benchmarks

We briefly evaluated TPC-C and TPC-CH (and with that
also the CH-benCHmark [16]). We found both benchmarks
to be too simple to demonstrate the effects of a more adept
partitioning approach. TPC-C, e.g., can be trivially partitioned
by warehouse identifier. The problem is that most benchmarks
do neither (i) include a broad range of queries with varying
characteristics nor (ii) exhibit any skew in the data or selection
criteria. However, we plan to evaluate TPC-DS as part of
future work. Due to the length limitations of this paper, we
will concentrate on the production SAP ERP system for the
remainder of this section.
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(a) Skipping performance without HTAP adaption. Due to the few analytical
queries, partitions are optimized for OLTP queries (i.e., partitioning along
primary key attributes).
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(b) Skipping performance with HTAP adaption. The dotted line denotes the
maximum skipping performance achieved when optimizing solely for OLAP,
showing that the skipping performance for OLAP queries is only slightly
impacted when optimizing for the complete workload including OLTP and
OLAP queries.

Fig. 3. Skipping results with and without HTAP adaption. Both normal forms
show results for the full workload traces including OLTP & OLAP queries.

B. Pruning Performance

Modern HTAP enterprise systems are clearly dominated by
reading queries, cf. [13]. As a consequence, our main objective
is to optimize for read performance by skipping as many tuples
as possible before the first plan operator is executed (via static
partition pruning, cf. [11]).

Amongst the most interesting questions for us was how
the adaption of the data skipping approach to handle mixed
workloads performs. Figure 3(a) shows the results of data
skipping when all queries are handled homogeneously. The
three clusters show the tracing periods of the production ERP
system. We see several important insights: (i) almost completely

“out-of-the-box” the data skipping approach reached average
pruning rates (i.e., accessed tuples vs. skipped tuples) of over
80%, (ii) the partitioning scheme is surprisingly stable and
even slightly improves after several months>, and (iii) OLAP
queries show a comparatively poor pruning rate.

Figure 3(b) shows the results of the adaption for HTAP
workloads. OLAP skipping performance improves significantly
while deteriorating marginally compared to OLAP-only opti-
mization. The dotted line denotes the maximum pruning ration
for OLAP queries when solely optimizing for OLAP (measured
for the last trace). Hence, we accept a minor reduction of the
average skipping performance (cf. Figures 3(a) and 3(b)) in
exchange for significantly improved OLAP performance.

Figure 4 shows the pruning rate and the size (denoted by
bar width) for each created partition. We can make two major
observations: (i) only a few small partitions have a pruning
rate below 85% and (ii) partition sizes are skewed. The reason
for the few small partitions that can often not be pruned is the
creation of generalized partitions that take remaining tuples.
These partitions cannot be pruned for the majority of queries
as their criteria are very broad. However, our adapted SOP
automatically limits the size of these partitions.

The size of the created partitions varies to a large extent.
The 32 partitions shown have been created as we assumed
a 32-socket server machine (e.g., SGI UV300H) and thus
tried to create ~32 partitions. However, we see the partition
size skew as neglectable because the resulting partitioning
scheme has excellent pruning results and enterprise systems
often contain thousands of tables. Instead of enforcing an even
data distribution, we would rather balance the data distribution
when placing partitions from other tables on the same node. As
the majority of tables do not have an inter-table dependency,
we consider a balanced distribution as doable.

C. Runtime Performance

To evaluate SOP, we prototypically implemented it in a
columnar in-memory database. As the tested database system
has been built with different assumptions about partitioning and
is not fully capable of physically partitioning by an arbitrary
number of attributes, we cannot make credible statements about
end-to-end performance. Hence, we will only briefly discuss
the runtime performance. For the executed tests, the runtime
impact of the partitioning is two-sided. On the one hand, the
results for scan-dominated queries show a speed up almost
linear with the share of skipped tuples. Further, the distribution
of physical partitions to the CPU sockets helped to improve the
scan performance as the dictionary was node-local (cf. [8]). On
the other hand, joins have been mainly impacted negatively as
the tested database system creates mapping structures between
each partition pair to join. These mappings can quickly become
prohibitively expensive for a larger number of partitions to

3We attribute the pruning improvement over time to the large impact of
the fiscal year in financial systems. In May, several processes still access
items from the previous fiscal year, this rate is slowing decreasing over time,
improving the partition scheme over time. Unfortunately, we have no query
trace from the beginning of the following fiscal year.



join. In general, the performance depends on the number of
partitions a query has to access, whether it combines data from
distant nodes (e.g., joining) where the QPI can quickly become
a bottleneck, and whether distant data can be directly compared
or not (cf. global vs. local dictionaries).

V. RELATED WORK

There is a vast array of published work about database
partitioning and declustering. In this section, we briefly discuss
the most relevant works in the field of physical partitioning. Due
to the length limitations of this paper, we skip the discussion
of dynamic pruning approaches using additional statistical data
structures (cf. [11], [17], [18]).

Agrawal et al. present AutoAdmin in [12], the physical
design advisor for SQL Server. The authors present a holistic
approach that considered both vertical and horizontal partition-
ing, as well as indexing and materialized views. As the state
space is accordingly large, the presented approach strongly
prunes possible partitioning criteria, does not consider data
characteristics, and omits partitioning criteria with more than
one dimension. While this approach is interesting in terms of
making complex design decisions in a reasonable time frame,
its focus is clearly on disk-based and row-oriented databases
for OLTP workloads, which is orthogonal to our focus.

The constraints for physical partitioning shifted with fully
DRAM-resident databases as they allow much faster data
transfers, enabling iterative partitioning with frequent adaptions.

Curino et al. [19] presented a workload-aware partitioning
approach that falls into the category of OLTP-optimized
approaches (cf. [20], [21]) which aim to minimize partition-
spanning transactions in order to improve throughput.

Sun et al. presented the successor of the data-skipping
approach in [22]. In their derivative called GSOP (generalized
skipping-oriented partitioning), tables are no longer partitioned
solely in a horizontal fashion. To better handle diverse potential
partitioning criteria, the authors implemented a column-major
format that can partition each column on its own. For HTAP
settings, we consider the negative impact of not having direct
access to all attributes of a tuple as prohibitively expensive.

Jindal et al. proposed an online partitioning approach [23]
that is both applicable for vertical as well as horizontal
partitioning. Similar to Navathe’s well-known vertical parti-
tioning approach [24], the authors use an affinity matrix-based
approach. While the presented approach is highly interesting —
especially its focus on online repartitioning — it is not directly
applicable for our domain: (i) it only considers one-dimensional
partitioning schemata which we have found to be not sufficient
for real-world systems and (ii) skewed data and access patterns
are not considered. Ghandeharizadeh et al. [10] and Boral
et al. [25] presented early approaches for multi-dimensional
declustering (i.e., range-based horizontal partitioning) for large
parallel analytical systems spanning multiple server nodes.

Hoppner et al. presented a partitioning approach for SAP
HANA to tier infrequently accessed columns to secondary
storage [26]. While this approach was optimized for HTAP
workloads, it did not prune data on a horizontal level.

Psaroudakis et al. compared data placement and task schedul-
ing strategies for SAP HANA and found that both are highly
relevant for an efficient usage of NUMA architectures [8].
They compared various strategies for distributing partitioned
columns (cf. Section I).

A rather orthogonal path is taken by database cracking [27],
where data is not directly partitioned but replicated to incremen-
tally create indices. We consider this approach as too expensive
since we focus on in-memory databases and thus want to avoid
any replication of data and keep a small memory footprint.

VI. FUTURE WORK & CHALLENGES

As part of our research on large NUMA systems, we are
currently implementing the foundation to support a wide range
of partitioning alternatives in Hyrise,, a column-oriented in-
memory research database*. We focus two aspects: flexibility
and repartitioning. As Hyrise, is a research database, the
implemented partitioning mechanism should allow flexible
partitioning schemata (feature-based approaches as SOP being
one of them). Another important aspect — that has not been
covered sufficiently in research from our point of view (apart
from OLTP-optimized partitioning approaches focusing node-
spanning transactions) — are efficient online repartitioning tech-
niques for HTAP systems. We think that this aspect is crucial
for any self-adapting and highly available database system. We
are working on a cost model that determines small iterative
changes to the partitioning scheme with minimal impact on the
systems runtime performance while still ensuring sufficiently
fast repartitioning. Depending on the available resources and
workload, the database can reinforce repartitioning performance
or lower the overhead of repartitioning.

With respect to our work on partitioning algorithms, we want
to improve the data locality of regular join partners. Looking
at large transactional tables (e.g., accounting documents and
deliveries) revealed that there is a mismatch between search
and join predicates. The typical header-item relationship in
normalized systems is interesting as join predicates are often
a subset of the search predicates. Usually, partitioning the
smaller header tables is deemed as neglectable as it introduces
a certain partitioning overhead without improving performance.
However, it might allow joining tables entirely node-locally by
applying the same partition scheme and node assignment to
both tables. This could significantly improve access locality
(and with that runtime performance) for joins and lower the
pressure on QPI links.

VII. CONCLUSION

For large server systems with NUMA architectures, the com-
bination of workload-driven partitioning, partition pruning, and
locality-aware query execution can vastly improve efficiency
and runtime performance. The topic of declustering is well
tackled for transactional workloads and key-value stores, but
less so for modern HTAP systems. We have presented the
results of our implementation of the aggressive data skipping

“4Hyrise, on GitHub: https://github.com/hyrise/hyrise
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approach by Sun et al. and evaluated the approach for a
production enterprise system. We extended the aggressive
data skipping approach by adapting it for HTAP workloads.
The results are promising. Especially for analytical workloads,
where the primary access path is linear scanning, efficient
partition pruning has the potential to improve performance
substantially. On average, more than 90% of tuples of a table
can be pruned for OLAP queries of the enterprise system.
With the ability to repartition and restructure data on-the-
fly in DRAM-resident databases, we see HTAP-optimized
and workload-driven partitioning becoming of increasing
importance. Especially with the trend towards autonomous
and self-pimping databases. With that, the question how to
maintain, iteratively improve with a low overhead, and develop
(range-based) partitioning schemata over time needs to be
further studied. Moreover, the interplay of adaptable partition
schemata and learned access patterns (e.g., from time series
analyses) is highly valuable and part of our future research.
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