
Towards a Distributed Multi-tier File System
for Cluster Computing

(Position Paper)

Herodotos Herodotou
Cyprus University of Technology

Limassol, Cyprus
Email: herodotos.herodotou@cut.ac.cy

Abstract—Distributed storage systems running on clusters of
commodity hardware are challenged by the ever-growing data
storage and I/O demands of modern large-scale data analytics.
A promising trend is to exploit the recent improvements in
memory, storage media, and network technologies for sustaining
high performance at low cost. While recent work explores using
memory and SSDs as a cache for local storage or combining
local with network-attached storage, no work has ever looked at
all layers together in a distributed setting. We present a novel
design for a distributed file system that is aware of heterogeneous
storage media (e.g., memory, SSDs, HDDs, NAS) with different
capacities and performance characteristics. The storage media
are explicitly exposed to users and applications, allowing them
to choose the distribution and placement of replicas in the
cluster based on their own performance and fault tolerance
requirements. At the same time, the system offers a variety of
pluggable policies for automating data management for increased
performance and better cluster utilization. We analyze the new
trends and challenges that led to our application- and data-centric
design choices, and discuss how those choices inspire new research
opportunities for data-intensive processing systems.

I. INTRODUCTION

Commodity machines on compute clusters have seen sig-
nificant improvements in terms of memory, storage media,
and network technologies. Memory capacities are constantly
increasing, which lead to the introduction of new in-memory
data processing systems, like Spark [1]. On the storage front,
flash-based solid state drives (SSDs) offer low access latency
and low energy consumption but are still relatively expensive,
making hard disk drives (HDDs) the predominant storage
media in datacenters today [2]. Finally, network-attached en-
terprise storage has been coupled with direct-attached storage
in cluster environments for improving data management [3].
This heterogeneity of available storage media with different
capacities and performance characteristics must be taken into
consideration while designing the next generation of dis-
tributed storage and processing systems.

At the same time, modern applications exhibit a variety of
I/O patterns: batch processing applications (e.g., MapReduce
[4]) care about raw sequential throughput, interactive query
processing (e.g., via Hive [5]) benefits from lower latency
storage media, whereas other applications (e.g., HBase [6])
make use of random I/O patterns. Hence, it is desirable to
have a variety of storage media and let each application choose
the one that best fits its performance, cost, and durability
requirements.

Recent work takes advantage of the increase in memory
sizes and utilizes caching or re-computation through lineage
for improving local data access in distributed applications [7],
[2], [1]. SSDs have also been used recently as the storage
layer for distributed systems, such as key-value stores [8] and
MapReduce systems [9]. Finally, [10], [3] focus on improving
data retrieval from remote enterprise or cloud storage systems
to local computing clusters by utilizing on-disk caching at the
cluster compute nodes.

Whereas previous work explores using memory and SSDs
as a cache for local storage, and local storage as a cache for
remote storage, no work has ever looked at all layers together
in a distributed setting. In this position paper, we argue for the
need of—and present a novel design for—a distributed, multi-
tier file system (MTFS) that utilizes multiple storage media
with different performance characteristics for storing data. Our
design focuses on two antagonistic system capabilities: contro-
lability and automatability. On one hand, the heterogeneous
storage media are explicitly exposed to users and applications,
allowing them to choose the distribution and placement of
replicas in the cluster based on their own performance and
fault tolerance requirements. On the other hand, MTFS offers a
variety of pluggable policies for automating data management
with the dual goal of increasing performance throughput while
improving cluster utilization.

The key challenge lies in the creation of the appropriate ab-
stractions that simplify and automate data management across
storage tiers yet give enough control to users and applications
to satisfy their varying requirements. In this way, higher-level
processing systems can take advantage of the unique capa-
bilities of MTFS to build their own automated management
features. At the same time, MTFS offers the de facto features
of fault tolerance, scalability, and high availability. Finally,
in order to support multitenancy, the system offers security
measures and quota mechanisms per storage media to allow
for a fair allocation of limited resources (like memory and
SSDs) across users.

Our high-level design is inspired by other popular dis-
tributed file systems such as GFS [11] and HDFS [12].
We believe this work will open new research directions for
distributed systems and, moving forward, we plan to utilize its
unique capabilities for improving the functionality of various
systems, such as the task scheduling algorithms of MapReduce
and Spark, the query processing of Pig and Hive, the workload
scheduling of Oozie, and many others.



II. SYSTEM ARCHITECTURE

MTFS enables scalable and efficient data storage on com-
pute clusters by utilizing directly-attached HDDs, SSDs, and
memory, as well as remote storage (network-attached or cloud
storage). It is designed to store and retrieve files, whose data
will be striped across nodes and replicated for fault tolerance.
MTFS employs a multi-master/slave architecture similar to
HDFS [12], shown in Figure 1.

A. Primary and Backup Masters

A Primary Master is responsible for maintaining two
metadata collections, the directory namespace and the block
locations. The directory namespace offers a traditional hier-
archical file organization as well as typical operations like
creating, deleting, and renaming files and directories. The file
content is split into large blocks (128MB by default) and each
block is independently replicated at multiple Workers. The
Master also maintains the mapping of file blocks to Workers
per storage media available. In order to scale the name service
horizontally, multiple Masters are used to form a federation
and are independent from each other.

Each Primary Master can have a Backup Master for in-
creased fault tolerance and availability. The Backup is respon-
sible for periodically creating and persisting a checkpoint of
the namespace metadata so that the system can start from the
most recent checkpoint upon a Master’s failure. In addition,
it maintains an in-memory up-to-date image of the namespace
and is standing by to take over in case the Master fails.

B. Workers

The Workers are run one per node in the cluster and are
responsible for (i) storing and managing the file blocks on the
various storage media, (ii) serving read and write requests from
the file system’s Client, and (iii) performing block creation,
deletion, and replication upon instructions from the Masters.
Each Worker is configured to use the available storage media
in the node it is running on. The same type of storage media
with similar I/O characteristics (e.g., SSD devices) across all
Workers are logically grouped into a virtual storage tier (e.g.,
the “SSD” tier). If some nodes have different types of SSDs,
for example PCIe and SATA SSDs, with different performance
characteristics, the system can be configured to use two tiers
for them (e.g., “SSD-1” and “SSD-2”).

The file blocks can be stored and replicated in one or more
tiers, based on requests from the Client or pluggable manage-
ment policies. For example, consider the cluster in Figure 1
that shows 4 tiers, namely “Memory”, “SSD”, “HDD”, and
“Remote”. A block may have 3 replicas on the “SSD” tier (on 3
different nodes); or 1 replica on each of the “Memory”, “SSD”,
and “HDD” tier (on 1, 2, or 3 different nodes); or any other
combination. Hence, users and applications have tremendous
flexibility on how to place and move data in MTFS.

When remote storage is attached to MTFS, applications
can use any of the Workers for reading and writing file blocks.
Reading a block from remote storage is equivalent to reading
a part of that file given an offset and a length. Hence, multiple
Workers can read different parts of the same file in parallel.
Management policies can also be used for caching data in one
of the higher-level tiers for improving future data accesses.

Fig. 1. Multi-tier File System (MTFS) architecture.

C. Clients

A user or application interacts with MTFS through the
Client, which exposes APIs for all typical file system opera-
tions. The management of files with respect to the storage tiers
is achieved through a replication vector that specifies the num-
ber of replicas for each tier. For example, the replication vector
V =<“Memory”, “SSD”, “HDD”, “Remote”>=< 1, 0, 2, 0 >
for a file F indicates that F has 1 replica in the “Memory”
tier and 2 replicas in the “HDD” tier. V can be used during
F ’s creation for specifying the desired replication factor per
tier for storing F .

A new API allows users to modify the replication vector
of a file and achieve various functionalities, including moving
a file between tiers (e.g., by changing < 1, 0, 2, 0 > to <
1, 1, 1, 0 >), copying a file between tiers (e.g., by changing
< 1, 0, 2, 0 > to < 1, 1, 2, 0 >), modifying the number of
replicas within a tier (e.g., by changing < 1, 0, 2, 0 > to <
1, 0, 3, 0 >), and deleting a file from a tier (e.g., by changing
< 1, 0, 2, 0 > to < 0, 0, 2, 0 >).

Each time V changes, a network-aware and tier-aware
placement policy is invoked for deciding where the addition or
deletion of a replica will take place. Finally, the Client exposes
both the locations and the tiers of the replicas, allowing
applications to make a fully-informed decision for which
replica to read from for improving the read I/O performance.

III. DATA OPERATIONS

The awareness of storage media with different performance
characteristics adds a significant level of complexity to the
main file operations of the system and creates the need for
new placement and retrieval policies. At the same time, the
new design offers the potential for using the file system as a
multi-level caching service as well as seamlessly integrating
MTFS with existing remote storage solutions.

A. Data Placement

An application adds data to MTFS by creating a new file
and writing the data to it one block at a time using the Client.
Upon a block creation, the Client first contacts the Master
and obtains a list of <Worker, Tier> pairs that will host the
replicas of that block, based on a pluggable block placement
policy. Next, the Client organizes a Worker-to-Worker pipeline
and sends the data. For example, suppose the block locations



are [< W1,M >, < W3, H >, < W6, H >]. Here, the data is
pipelined from the “Memory” tier in Worker W1 to the “HDD”
tier in W3 to the “HDD” tier in W6.

Our default block placement policy offers a tradeoff be-
tween minimizing the write cost and maximizing data reliabil-
ity and read I/O performance. The placement decision is made
along two axes: the network topology and available storage
tiers. The goal of the network-aware part is to improve fault
tolerance by making replicas across racks, while the goal of
the tier-aware part is to increase I/O performance.

We use the same network-aware approach as HDFS [12].
When a new block is created, the first replica is placed on the
node where the Client is located, the second and third replicas
are placed on two different nodes in a different rack, and the
rest are placed on random nodes. The second aspect of our
policy takes into consideration the presence of multiple storage
tiers and selects them in a way that balances performance with
storage capacity. Finally, combining the network-aware and
tier-aware data placement approaches allows MTFS to place
replicas across nodes and racks as well as across tiers.

B. Data Retrieval

When an application reads a file, the Client contacts the
Master for the list of <Worker, Tier> pairs that host replicas
of the file blocks and then contacts the first Worker directly for
transferring the data. The Master returns the list ordered based
on a pluggable data retrieval policy. The order is determined
using the network location of the Client, the network locations
of the Workers, as well as the storage tiers that host the
replicas. On one hand, the Client should read the replica from
its nearest Worker in order to improve the read performance
and reduce network traffic. On the other hand, the Client
should access the replica from the fastest tier for improving the
I/O latency. However, the nearest replica may be on a slower
tier whereas a replica on a faster tier is on a more distant
node. The policy must be aware of the tradeoffs and strive for
selecting the replica that provides the highest overall I/O.

Our default retrieval policy implements a replica ordering
algorithm that takes into consideration both the network lo-
cation and the tier of each replica. The algorithm takes as
input (i) the average data transfer rates of the storage media
and network devices in the cluster, (ii) the Client location, and
(iii) the replica locations and storage tiers. For each replica
location and tier, it calculates the rate of transferring the block
data from there to the Client. Finally, it sorts the locations
based on the decreasing transfer rates.

C. Replication Management

The Master is responsible for ensuring that each block
always has the intended number of replicas on each storage
tier. The Master can detect the situations of under- or over-
replication during the periodic block reports received from the
Workers. When a block becomes under-replicated on some
particular tier, the Master uses the block placement policy to
select one (or more) Workers for hosting the new replica(s).
The selected Workers utilize the data retrieval policy for
copying from the most efficient location and tier. When a
block becomes over-replicated on some particular tier, the
Master selects one (or more) replica(s) to remove based on

a similar pluggable policy. A user can also explicitly alter the
replication vector of a file using the Client. In this case, the
same mechanisms are used for achieving the desired change.

D. Multi-level Cache Management

MTFS is a general purpose file system that can be con-
figured to be used as a multi-level caching system, offering
three unique capabilities. First, unlike typical caching systems,
any storage tier above the lowest one can store both base
and cached data. Second, the cache management policies
can be implemented both inside the system (via pluggable
policies) and outside the system (via the Client’s API), allow-
ing applications the maximum possible flexibility on how to
take advantage of MTFS. Finally, in addition to the typical
cache eviction policies, MTFS also offers pluggable cache
admittance policies for deciding when and what data to cache.

E. Interaction with Remote Storage

Another unique capability of MTFS is the ability to attach
a remote storage system and get unified view and access
methods to all the data. The remote storage can have the
form of another distributed file system running in a different
cluster (e.g., HDFS, MapR), a cloud-based storage system
(e.g., Amazon’s S3, Azure Blob Storage), or a network-
attached storage solution. When a remote storage is attached,
the directory namespace is appended with information from
the remote storage in a lazy way, i.e., upon access of data.
The user can then interact with the remote storage by using
the local namespace through the MTFS Client.

IV. ENABLING USE CASES

One of the most powerful features offered by MTFS is the
fine-grained control it provides over the various storage media
it manages. Applications can explicitly store data in different
tiers, change the replication vector of files, and read from
the location nearest to them. These capabilities can provide
significant benefits to large-scale analytics frameworks (e.g.,
MapReduce, Hive, Pig, Impala) in terms of manageability and
performance as they can schedule their data processing jobs
in both a location-aware and a storage-media-aware manner.

MapReduce Task Scheduling: In Hadoop MapReduce [13],
the Job Scheduler is responsible for scheduling the Map
and Reduce tasks to execute on the compute nodes of the
cluster. Since HDFS exposes the locations of the blocks to
be processed by the Map tasks, the Job Scheduler will try
to schedule the execution of each task to the nearest node
containing the corresponding block. With MTFS, the Job
Scheduler can also utilize the information about which storage
media is hosting each block for improving its scheduling
decisions. Furthermore, since the Job Scheduler maintains the
task queue, it also knows which files will be accessed soon.
The new replication vectors API provided by MTFS allows
for the Job Scheduler to implement a pre-fetching mechanism
and instruct MTFS to start moving (or copying) block replicas
to a higher storage tier (e.g., memory). This approach better
overlaps I/O with the task processing, which can increase
cluster utilization and improve the latency for future tasks.

Workload Scheduling: Analytical workloads are typically
expressed as directed acyclic graphs of jobs [13], [1]. In such



workloads, the output data from one job becomes the input
to the following job(s), and hence, smart intermediate data
placement can have great benefits to the overall workload
execution time. MTFS provides the flexibility of placing the
intermediate data in local memory or SSDs in order to speed
up the overall processing. In addition, the workload processing
system has intricate knowledge of any common data among
jobs or workloads and can utilize MTFS for dynamically
moving data up and down the storage tiers.

Scale-out Analytics for Enterprise Data: Enterprise data
such as e-mails, log data, or transaction records often reside
in dedicated storage systems with enterprise-level management
features. Analysis of such data typically requires expensive
ETL processes for copying the data into a separate storage
system before running any analytical workloads. The ability
to connect remote storage to MTFS has the potential of
significantly simplifying the data management by creating a
shared-storage back-end system. MTFS will dynamically load
data in parallel from the remote storage for processing in the
cluster and selectively push data back as needed.

Interactive Analytics: Apart from the typical batch-oriented
analytics, interactive data exploration is becoming increasingly
important. In addition, more complex iterative algorithms for
machine learning and graph processing are becoming popular
[1]. A common aspect for these applications is the need to
share data across multiple analysis steps (e.g., multiple queries
from the user, or multiple steps of an iterative computation).
By allowing explicit memory management, MTFS essentially
allows applications to pin their working sets in cluster memory.
Fault tolerance is provided by keeping multiple replicas in
memory or creating replicas on persistent storage (e.g., SSDs).

V. RELATED WORK

Hierarchical storage management (HSM) systems provide
a policy-based way of managing data across a storage hierar-
chy that consists of disk and tape arrays [14]. The main focus is
on archiving inactive files to the lower tiers and retrieving them
upon reference. Unlike our system, HSM does not offer any
locality or storage-media awareness to applications. Storage-
tier-aware file systems form the evolution of HSM and are
aware of device “types” (arrays of SSDs and HDDs). They
offer some control over initial placement and movement of
data based on policies [15]. However, each file must reside
completely on a tier and they do not offer locality awareness.

Memory caching is a standard technique for improving
local data access in distributed applications. PACMan [7]
is a memory caching system that explores memory locality
of data-intensive parallel jobs. However, PACMan does not
allow applications to pin data in memory for subsequent ac-
cesses. Resilient Distributed Datasets (RDDs) are a distributed
memory abstraction and a new programming interface for in-
memory computation [1]. RDDs allow applications to persist a
specified dataset in memory for reuse and use lineage for fault
tolerance. They are specialized for iterative algorithms and
interactive data mining tools, whereas MTFS offers a general-
purpose file system with superset capabilities.

MixApart [3] and Rhea [10] focus on improving data
retrieval from remote enterprise or cloud storage to local
computing clusters. In particular, MixApart utilizes on-disk

caching at compute nodes for data residing on enterprise
storage systems but cannot write results back to the remote
storage. Rhea uses static analysis techniques of application
code to generate storage-side filters which remove irrelevant or
redundant data transfers from storage nodes to compute nodes.
However, the target applications of Rhea are not I/O intensive;
they are supposed to have high data selectivity.

VI. CONCLUSIONS AND FUTURE WORK

We presented the design for a novel, distributed, multi-
tier file system for cluster computing that is aware of various
heterogeneous storage media with different capacities and per-
formance characteristics. MTFS contains automated policies
for managing the placement of data across nodes and storage
tiers in a cluster. In addition, it exposes the network locations
and storage tiers of the data in order to allow higher-level
systems to make locality-aware and tier-aware decisions. Our
plans moving forward are to investigate the true potential of a
tiered storage system across the entire data processing stack.

REFERENCES

[1] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Comput-
ing,” in Proc. of the 9th USENIX Symp. on Networked Systems Design
and Implementation (NSDI). USENIX Association, 2012, pp. 15–28.

[2] H. Li, A. Ghodsi, M. Zaharia et al., “Tachyon: Reliable, Memory Speed
Storage for Cluster Computing Frameworks,” in Proc. of the 5th Symp.
on Cloud Computing (SoCC). ACM, 2014, pp. 1–15.

[3] M. Mihailescu, G. Soundararajan, and C. Amza, “MixApart: Decoupled
Analytics for Shared Storage Systems,” in Proc. of the 11th USENIX
Conf. on File and Storage Technologies (FAST). USENIX Association,
2013, pp. 133–146.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[5] A. Thusoo, J. S. Sarma, N. Jain et al., “Hive: A Warehousing Solution
over a Map-Reduce Framework,” Proc. of the VLDB Endowment, vol. 2,
no. 2, pp. 1626–1629, 2009.

[6] L. George, HBase: The Definitive Guide. O’Reilly Media, 2011.
[7] G. Ananthanarayanan, A. Ghodsi, A. Wang et al., “PACMan: Co-

ordinated Memory Caching for Parallel Jobs,” in Proc. of the 9th
USENIX Symp. on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2012, pp. 267–280.

[8] B. Debnath, S. Sengupta, and J. Li, “SkimpyStash: RAM Space Skimpy
Key-Value Store on Flash-based Storage,” in Proc. of the 2011 ACM
SIGMOD Intl. Conf. on Management of Data. ACM, 2011, pp. 25–36.

[9] B. Li, E. Mazur, Y. Diao et al., “A Platform for Scalable One-pass
Analytics Using MapReduce,” in Proc. of the 2011 ACM SIGMOD
Intl. Conf. on Management of Data. ACM, 2011, pp. 985–996.

[10] C. Gkantsidis, D. Vytiniotis, O. Hodson et al., “Rhea: Automatic
Filtering for Unstructured Cloud Storage,” in Proc. of the 10th USENIX
Symp. on Networked Systems Design and Implementation (NSDI).
USENIX Association, 2013, pp. 343–355.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43, 2003.

[12] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proc. of the 26th IEEE Symp. on Mass
Storage Systems and Technologies (MSST). IEEE, 2010, pp. 1–10.

[13] T. White, Hadoop: The Definitive Guide. Yahoo! Press, 2010.
[14] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP AutoRAID

Hierarchical Storage System,” ACM Trans. on Computer Systems
(TOCS), vol. 14, no. 1, pp. 108–136, 1996.

[15] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and R. Rangaswami,
“Cost Effective Storage using Extent Based Dynamic Tiering,” in Proc.
of the 9th USENIX Conf. on File and Storage Technologies (FAST),
vol. 11. USENIX Association, 2011, pp. 20–34.


