
Flash-aware Index Scan in PostgreSQL

Da-som Hwang1, Woon-hak Kang 2, Gihwan Oh 3, Sang-won Lee4

College of Info. And Comm. Engineering

Sungkyunkwan University

Suwon, Korea
1 rhcqnssp32@skku.edu

2 woonagi319@skku.edu

3 wurikiji@skku.edu

4 swlee@skku.edu

Abstract— Recently, a trend of storage markets has changed

from hard disks (HDD) that have dominated the markets for the

last several decades to flash based solid state disks (SSD).

Corresponding to the drift, various studies have been conducted

to adapt traditional database systems (DBMS) to storage devices

based SSD. However, most DBMSs are still more HDD-friendly.

HDD and SSD have inherent features because of their own

architecture designs. HDD has a wide gap between performance

of sequential I/O and that of random I/O owing to its mechanical

part. Due to the fact, DBMS usually prefers a full table scan to

the index scan except when a selectivity is enough low to take an

advantage of the index scan. Unlike HDD, SSD without any

mechanical parts has a tiny gap between performance of

sequential I/O and that of random I/O so that the characteristic

of SSD allows DBMSs to efficiently access to a storage based SSD

with the index scan. Another feature of SSD is an internal

parallelism from its internal architecture. In spite of a

circumstance with the secondary storage based SSD, DBMSs are

more likely to choose the full table scan rather than the index

scan for I/O operations. It is necessary to understand distinct

properties and differences of two storage devices and make the

index scan SSD-friendly to improve its performance.

In this paper, we simulate an optimization of the index scan,

flash-aware index scan by combining two concepts; sorted index

scan that scans tuples in order of record ids and parallel

synchronous I/O that is a traditional synchronous I/O with an

array of I/O requests per operation. We implement them to

simulate the flash-aware index scan in PostgreSQL to make the

system be aware of SSD nature and enhance the performance of

the index scan.

Keywords—flash based SSD; sorted index scan; parallel

synchronous I/O;

I. INTRODUCTION

Hard disks (HDD) have monopolized storage markets for
several decades. Most commercial database management
systems (DBMS) have developed to improve its performance
with HDD based storages. Flash based solid state disks (SSD)
are considered as a substitute of HDD as storage vendors
supply cheap and high-capacity SSDs in the last decade.
Corresponding the trend, various studies have been conducted
to adapt traditional database systems (DBMS) to storage

devices based SSD. However, most DBMSs are still more
HDD-friendly.

HDD and SSD have inherent features because of their own
architecture designs. Mechanical parts in HDD, which is an
outstanding feature of HDD, cause high response time. In
addition, a performance gap between sequential I/O and
random I/O is big owing to the physical parts. Due to the fact,
DBMS usually prefers a full table scan to the index scan except
when a selectivity is low enough to take an advantage of the
index scan.

Unlike HDD, SSD doesn’t have any mechanical parts.
Taking an advantage of such a characteristic, SSD has a tiny
gap between performance of sequential I/O and that of random
I/O. This allows DBMSs to efficiently access to a storage
based SSD with the index scan. Another feature of SSD is an
internal parallelism from its internal architecture. It provides a
performance improvement when DBMS exploits the
parallelism of SSD with proper ways such as multiple I/O
requests [1].

In spite of a circumstance with the secondary storage based
SSD, DBMSs are more likely to choose the full table scan
rather than the index scan for I/O operations. It is necessary to
understand distinct properties and differences of two storage
devices and make the index scan SSD-friendly to improve its
performance.

In this paper, we simulate an approach that the index scan
can be flash-aware combining two concepts: sorted index scan
and parallel synchronous I/O. Sorted index scan fetches tuples
in an order of record identifiers [2]–[4]. It prevents us from
reading the same pages repetitively. Parallel synchronous I/O is
an idea introduced in [5] first. It works like a traditional
synchronous I/O not with a single I/O request but with an array
of I/O requests per operation. Also we implement the flash-
aware index scan in PostgreSQL to let the database
management system be aware of SSD nature and enhance the
performance of the index scan.

This paper is organized as follows. Section 2 explains key
concepts covering sorted index scan and parallel synchronous
I/O in details. Section 3 describes the flash-aware index scan
with combination of the two idea and how we implement the
flash-aware index scan in an open source based DBMS,

mailto:rhcqnssp32@skku.edu
mailto:woonagi319@skku.edu
mailto:swlee@skku.edu

PostgreSQL. We present experimental results in Section 4.
Section 5 concludes the paper.

II. BACKGROUND

In this section, we give full details of a few concepts of the
flash-aware index including sorted index scan and parallel
synchronous I/O as we mentioned in the introduction section.
With the details, we also explain why each concept has good
influence on performance of the index scan with SSDs.

A. Index clusteredness

Index clusteredness is one of factors that has an impact on a
performance of the index scan. There are two types of index
when it comes to its physical arrangement on a disk: clustered
index and nonclustered index. It is a clustered index if data
records of a table are settled on disks corresponding with the
order of the data entries of an index on the table. Otherwise, it
is a nonclustered index. If an index on a table has nonclustered
index, then data pages are fetched randomly and even the same
data page is more likely to be read several times with limited-
size buffer when we access the table with the index scan. It
makes the performance of the index scan worse. Even if a flash
based SSD works well in a random access pattern, it has an
imbalance between a performance of sequential I/O and that of
random I/O. Thus, the performance of the index scan on SSDs
still is affected by the clusteredness of an index. We can see
how much it has an effect on a response time of the index scan
in Section 4.

B. Sorted Index Scan

Sorted index scan is an approach to improve execution of
the index scan with nonclustered index. It fetches records in the
order of page identifiers by sorting record identifiers on index
entries into page identifiers order before accessing data records.
It allows us to sequentially read the data pages on disks once at
most so that we avoid reading the same pages again that we
have ever read. In other words, it decreases the total number of
I/O requests for the index scan. Thus, we can obtain
performance improvement since sequential reads always
outperform random reads on hard disks as well as flash based
SSDs.

There is a drawback of sorted index scan. We receive out-
of-order records when we access a table with sorted index scan
since they are read in the ordering of data pages on disks.
However, this shortcoming can be overcome with sort
algorithms in DBMS and we can show that sorted index scan
with external sort outperforms traditional index scan. This is
because an I/O cost is more expensive than cost of running a
sort algorithm.

We adapt PostgreSQL terms for the paper. A tuple
identifier (tid) in PostgreSQL is the same term as a record
identifier(rid). In PostgreSQL, it provides tid scan that can
work like sorted index scan but its implementation has a flaw.
We modify tid scan algorithm in PostgreSQL to work in a way
that we expect. We will introduce it in details in the next
section. Furthermore, we need to transform a query to use tid
scan because PostgreSQL exploits tid scan only in a specific
query form.

Fig. 1. Query transformation for sorted index scan in PostgreSQL

Fig. 1 describes the query transformation. We write the
query referencing to [2]. The query returns tuples from table
tab of which have column values in the given range, between
min and max. In this example, there is a nonclustered index on
column a of table tab. In order to execute the tid scan in
PostgreSQL, we need to give PostgreSQL specific current
tuple identifiers (ctid). The innermost SELECT statement is for
gathering ctids as an array which is used for the tid scan in an
range of column values between min and max. The array is
sorted according to the ordering of data pages on disks. With
collected ctids, we access data records and retrieve them.

C. Parallel Synchronous I/O (P-sync I/O)

Roh et al. [1] has suggested a new I/O request method,
parallel synchronous I/O (P-sync I/O) for the future OS kernel
version. P-sync I/O performs still like a conventional
synchronous I/O but it works with an I/O array as a unit of
operation unlike the sync I/O operating with a single I/O
request. P-sync I/O is derived from an attempt to utilize
channel-level parallelism better. For taking advantages of
channel-level parallelism, many I/O requests are delivered
together or in a short interval among requests since a queue
span of a queue processing I/O in SSDs is very short.

It has indicated three requirements of P-sync I/O as follow.

 Issue of P-sync I/O: It sends only a set of I/O requests
to disks at a time and regains the results at once. In
other words, the other sets of I/O requests should
suspend until the previous one retrieves request results.

 Processing of P-sync I/O: An array of I/O requests is
sent from a user space to a kernel space as a group and
each requests in the array should wait until all of them
arrives in the kernel space.

 Completion of P-sync I/O: The process is blocked until
the I/O request lists are totally dealt with so that it does
not consider how to handle the I/O completion events.

It says any I/O processing methods that assure the
requirements do not exist. With Linux-native asynchronous I/O
API, it emulated P-sync I/O but its implementation did not
perfectly satisfy the second requirement. We emulate with the
API in PostgreSQL and we will specifically explain how we
implement in Section 3.

Fig. 2. Flash-aware Index Scan

Furthermore, it lists three algorithm design principles
including principles from previous studies [6], [7] as well as its
own experimental results.

 Request I/Os with large granularity to exploits package-
level parallelism.

 Create an array of I/Os in order to utilize the parallelism
of SSD. Consider using P-sync I/O first in order to issue
the array in a single process and save parallel
processing for later use in more suitable applications.

 Keep away from making mingled read and write I/O
pattern.

III. FLASH-AWARE INDEX SCAN

We implement a new index scan to be aware of a flash
based SSD with sorted index scan and P-sync I/O on
PostgreSQL and explain how to implement the flash-aware
index scan in details.

A. Flash-aware Index Scan

We apply sorted index scan and P-sync I/O to a traditional
index scan to take advantages of internal parallelism of flash
based SSDs at most. Fig. 2 describes how the flash-aware
index scan works. For this example, a P-sync factor is five. It
means we can send and receive maximum five I/O requests at
once. A database system request 5 tuples and the requesting
order is the same number with circular numbers. With sorted
index scan, first, it makes a temporal list of requested tids by
sorting them in an order of data pages and it sequentially
accesses data pages in order of tids in the sorted list. With P-
sync, the buffer manager in PostgreSQL puts the requested
pages in a temporal I/O buffer list and returns the list when it
receives five I/O results. Thus, a list, <0, 1, 2, 8, 9 > is returned
rather than <0, 9, 1, 8, 4>.

B. Implementation in PostgreSQL

1) Sorted Index Scan: We exploit tid scan in PostgreSQL

as sorted index scan but we modify several part of the

algorithm because of its implementation flaw. Tid scan is

composed of two phases like sorted index scan. The first

phase is to obtain tuple ids and list them in an order of disk

page ids. The second phase is to fetch the data records in

sorted tuple ids order. However, while it collects tuple ids in

the first stage, tid scan fetches useless tuples one by one from

disk pages by calling a function, index_fetch_heap(). It just

utilizes the normal index scan algorithm that fetches real data

records when creating an array of tuple ids for tid scan

although we can obtain tuple ids without fetcing data records.

This causes extra read requests so that tid scan performs even

worse than the index scan does. We simply change the tid

scan’s algorithm flow to get rid of unnecessary reads. Fig. 3

shows the original flow of tid scan and Fig. 4 represents that of

tid scan without the defect that we mentioned. These flow

charts do not show exact details of the whole tid scan but they

give simple illustration of creating a tid list. To distinguish

between the flow for normal index scan and that for

accumulating tuple ids for tid scan, we define index related

functions similar with existing functions for the index scan in

PostgreSQL. The red box is for creating a temporal array of

tuple ids for executing the tid scan. As we describe in Fig. 3,

while collecting tuple ids, the original tid scan reads real

tuples that just are abandoned because they are not needed in

this step. It means the original tid scan in PostgreSQL reads

the same data twice. It implies that the tid scan doesn’t suit for

the sorted index scan. Hence, we fixed the original tid scan not

to fetch unnecessary tuples in the first procedure for sorted

index scan. Fig. 4 shows the modified tid scan that works as

we expected for sorted index scan by adding simple functions

and changing slightly the tid scan flow.

Fig. 3. Flowchart of the original tid scan

Fig. 4. Flowchart of modified tid scan

2) Parallel Synchronous I/O: We implement parallel

synchronous I/O to deal with multiple I/O requests at once by

using direct I/O and a library for asynchronous I/O, Libaio.

For asynchronous I/O in PostgreSQL, we should use direct I/O

and we add a direct I/O flag in proper positions such as when

to open files and create new function pointers and functions

working with libaio. Also, we add a global variable,

MAX_LIBAIO as a factor to scale how many I/O requests are sent

to disks and several functions mimicking the normal functions

for reading a data page for a buffer in PostgreSQL but they

process multiple buffers at a time. For example, two functions,

md_read_start() and md_read_insert() are related to the first

requirement of P-sync I/O in Section 2.C and md_aio_read() and

md_aid_end() are associated with the second requirement and the

last requirement respectively. Also, we add three new

parameters, Buffer *mbuf, int mbufNum, ItemPointerData *tidList. mbuf,

which is a Buffer pointer type instead of Buffer type, contains

multiple buffer pages’ information and mbufNum always has the

value of MAX_LIBAIO and let functions know how many

buffer pages will be read. Lastly, we hand over tidList that we

obtain in the first step of tid scan through ItemPointerData

pointer parameter in substitute of BlockNumber parameter in

normal functions corresponding to proposed functions. tidList

has all necessary location information of tuples that we are

going to access and put the data pages from disks into mbuf in

substitute of BlockNumber parameter in normal functions

corresponding to proposed functions. ReadBufferMultiple_common()

actually plays a role in handling buffer requests. The other

functions are a kind of wrappers or simple callers.

ReadBufferMultiple_common() is similar with ReadBuffer_common()

except that it deals with multiple buffers.

IV. EXPERIMENTAL RESULT

We carry out experiments imitating the experiments in [2]
and experimental settings as well as the sample table are based
on [2].

A. Experimental background

For the experiments, we used a customized PostgreSQL-9.3
with Intel i5 3.40 GHz quad-core processor and 8 GB RAM.
As data tablespace storage, we used Samsung SSD 840pro.

The sample table has 2.5 million tuples and its tuple is
300B long. Owing to build a nonclustered index on the table,
we put randomly populated unique integer values between 1
and 2,500,000 to column a of each tuple and created an index
on column a. We copy the sample table for each user when we
execute queries with multiple users. We adjust a selectivity by
a range of column a in where clause for each query Fig. 1.

The logical selectivity represents the ratio of the requested
number of records to the total number of records. The physical
selectivity means the amount of read data pages to the total
data pages.

TABLE I. EXECUTION TIME OF ACCESS METHODS

(SINGLE USER)

Access

method
5% 10% 20% 30% 40%

IDX 10.35 72.24 145.72 217.98 291.76

SIDX 12.60 32.40 35.37 35.96 36.92

SIDX+Psync 2.21 17.32 19.36 19.93 20.69

TABLE II. EXECUTION TIME OF ACCESS METHODS (12 USER)

Access

method
5% 10% 20% 30% 40%

IDX 36.63 19.33 39.89 59.06 79.32

SIDX 24.30 14.98 13.36 14.70 14.97

SIDX+Psync 13.94 3.00 4.04 4.37 4.83

B. IO patterns of Index Scan, Sorted Index Scan and Flash-

aware Index Scan

In order to show that the access methods work as we
designed, we traced I/O pattern while carrying out the sample
query. The logical selectivity of the query is 30% and P-sync
I/O factor of flash-aware index scan is 128. Fig. 5(a) plots the
I/O pattern of the index scan and Fig. 5(b) plots that of sorted
index scan and the flash-aware index scan. As expected, the
index scan access randomly data pages on SSD as shown in
Fig. 5(a). Otherwise, in Fig. 5(b), we observed that sorted
index scan (green) and the flash-aware index scan (red)
sequentially read data pages on SSD. Also, we confirm that the
flash-aware index scan exploits internal parallelism of SSD in
Fig 5(b).

C. Performance evaluation of Index Scan, Sorted Index Scan

and Flash-aware Index Scan

We set data block size, data buffer cache, and sort memory
to 8 KB, 256 MB, and 1 MB respectively. The table size is
about 800 MB with 8 KB-data block.

For the range query in Fig. 1 against the sample data with
the nonclustered index, we measured the query execution time
in seconds of three methods; the index scan (IDX), sorted
index (SIDX) and the flash-aware index scan (SIDX+P-sync)
on SSD. First of all, we vary the logical selectivity from 5% to
40% about a single user as shown in Table 1. Next, we conduct
the same query with 12 users varying the logical selectivity as
shown in Table 2.

Table 1 shows that the performance gap between the index
scan and sorted index scan become larger as the selectivity
increases. This is because the index scan produces random I/O
access patterns and repetitive reads on the same disk pages
more and more corresponding to the selectivity. Sorted index
scan improves the performance about from 1.3 times to 5.3
times against the index scan. Compared to sorted index scan,
flash-aware index scan (SIDX+P-sync) outperforms sorted
index scan about from 3 times to 5 times since it takes an
advantage of internal parallelism of SSD.

We don’t conduct the same experiments with various buffer
sizes. This is because a buffer size doesn’t affect the
performance sorted index scan because it reads the needed data
pages only once. In addition, we flush every cache such as
PostgreSQL buffer cache and OS cache whenever executing a
query. Thus, sorted index scan and sorted index scan with P-
sync I/O will still show a similar performance improvement
even though a buffer cache is large.

Table 2 describes the performance of access methods with
12 users. It represents the similar performance improvement
trend with Table 1. We can still obtain the improvements in
sorted index scan and flash-aware index scan with multiple
users due to internal parallelism of SSD as well.

D. Performance evaluation of Full Table Scan, Sorted Index

Scan and Flash-aware Index Scan

We set data block size, data buffer cache, and sort memory
to 4 KB, 256 MB, and 1 MB respectively. The table size is
about 890 MB with 4 KB-data block.

We measured the query execution time in seconds of three
methods; the full table scan (FTS), sorted index (SIDX) and the
flash-aware index scan (SIDX+P-sync) on SSD for the same
query in Section 4. C. We vary the physical selectivity from
10% to 100% and the number of concurrent users for each
selectivity. Fig. 6 depicts the performance results.

First, Fig. 6 compares the performance of FTS and SIDX.
Sorted index scan always outperforms the full table scan except
for the cases only with single user over 20% of the physical
selectivity due to the overhead of sorted index scan. However,
the burden of sorted index scan is hidden by exploiting the
internal parallelism of SSD when the concurrent users increase.
Even sorted index scan is 70% faster than the full table scan
when it reads the whole table with 24 concurrent users.

Next, Fig. 7 makes a comparison between the performance
of the full table scan and that of the flash-aware index scan.
Sorted index scan with P-sync I/O utilizes the internal
parallelism of SSD better than sorted index scan does. The
performance of sorted index scan with P-sync I/O is about
from 2 times to 4.8 times faster than the full table scan.
Comparing the performance of sorted index scan with that of
the sorted index scan with P-sync, the sorted index scan with
P-sync outperforms about from 1.5 times to 7 times against the
sorted index scan.

V. CONCLUSION

In this paper, we implemented a flash-aware index scan that
combines two concepts, sorted index scan and P-sync I/O, in
PostgreSQL to exploits internal parallelism of SSD at most. As
shown from the experimental results in Section 4, we showed
the flash-aware index scan outperforms two conventional
access method, the index scan and full table scan and sorted
index scan as an approach for optimizing the index scan, at 1.5
times to 7 times. This is because the flash-aware index scan
took an advantage of internal parallelism of SSD better than
the three access methods as we expected as shown in Fig. 5.

Fig. 6. Performance of Full Table Scan and Sorted Index Scan

Fig. 7. Performamce of Full Table Scan and Sorted Index Scan with P-sync

(a) Index Scan

(b) Sorted Index Scan and Flash-aware Index Scan (SIDX+P-sync)

Fig. 5. IO Patterns of Access Method

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education, Science and
Technology(2012R1A1A2A10044300). Also, This work was
partly supported by the IT R&D program of
MKE/KEIT(10041244, SmartTV 2.0 Software Platform).

REFERENCES

[1] Pedram Ghodsnia, Ivan T.Bowman, and Anisoara Nica, “Parallel I/O

Aware Query Optimization”, SIDMOD’14, June 22-27, 2014, Snowbird,
UT, USA

[2] Eun-Mi Lee, Sang-won Lee, and Sang-won Park, “Optimizing Index
Scan on Flash Memory SSDs”, SIGMOD Record, December 2011, vol.
40, No.4

[3] J. M. Cheng, D. J. Haderle, R. Hedges, B. R. Iyer, T. Messinger, C.
Mohan, and Y. Wang., “An Efficient Hybrid Join Algorithm: A DB2
Prototype.” , Proceedings of ICDE, pages 171–180, 1991.

[4] P. Valduriez. Join Indices. In ACM Transactions on Database Systems,
pages 218–246, 1987.

[5] Hongchan Roh, Sanghyun Park, Sungho Kim, Mincheol Shin, and Sang-
won Lee, “B+-tree Index Optimization by Exploiting Internal
Parallelism of Flash-based Solid State Drives”, Proceeding of the VLDB
Endowment, Vol. 5, No.4

[6] F. Chen, R. Lee, and X. Zhang., “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing.”, HPCA, pages 266-277, 2011.

[7] Intel. intel x25-m. http://download.intel.com/design/
ash/nand/mainstream/Specification322296.pdf.

[8] Pedram Ghodsnia, Ivan T.Bowman, and Anisoara Nica, “Parallel I/O
Aware Query Optimization”, SIDMOD’14, June 22-27, 2014, Snowbird,
UT, USA

