
Query Processing on Low-Energy Many-Core

Processors

Annett Ungethüm#, Dirk Habich#, Tomas Karnagel#, Wolfgang Lehner#, Nils Asmussen† , Marcus Völp†,

Benedikt Nöthen∗, Gerhard Fettweis∗

Database Technology Group, Technische Universität Dresden, Germany
{annett.ungethuem, dirk.habich, tomas.karnagel,wolfgang.lehner}@tu-dresden.de

† Operating Systems Group, Technische Universität Dresden, Germany
{asmussen, voelp}@os.inf.tu-dresden.de

∗ Vodafone Chair Mobile Communications Systems, Technische Universität Dresden, Germany
{benedikt.noethen, gerhard.fettweis}@ifn.et.tu-dresden.de

Abstract—Aside from performance, energy efficiency is an
increasing challenge in database systems. To tackle both aspects
in an integrated fashion, we pursue a hardware/software co-
design approach. To fulfill the energy requirement from the
hardware perspective, we utilize a low-energy processor design
offering the possibility to us to place hundreds to millions of chips
on a single board without any thermal restrictions. Furthermore,
we address the performance requirement by the development of
several database-specific instruction set extensions to customize
each core, whereas each core does not have all extensions.
Therefore, our hardware foundation is a low-energy processor
consisting of a high number of heterogeneous cores. In this
paper, we introduce our hardware setup on a system level
and present several challenges for query processing. Based on
these challenges, we describe two implementation concepts and
a comparison between these concepts. Finally, we conclude the
paper with some lessons learned and an outlook on our upcoming
research directions.

I. INTRODUCTION

For the last 30 years, disk-centric systems based on com-

modity hardware exploiting only a minimal set of regular oper-

ating system services have reflected the state-of-the-art. Within

the last years, however, this picture has dramatically changed

due to several reasons, but especially due to significant devel-

opments in the hardware sector. The awareness of the need

to be more focused on special capabilities of the underlying

system, currently has a huge impact on research as well as

on the commercial data management ecosystem. Moreover,

the database community sparked a large number of extremely

innovative research projects to push the envelope in the context

of modern database system architectures. Using this spirit,

our overall vision is to develop an energy-efficient database

system using a hardware/software co-design approach. There-

fore our research project is highly interdisciplinary involving

researchers from the hardware sector, operating systems, and

database systems.

Generally, in order to improve the energy efficiency of a

database server, two independent directions can be pursued.

On the one hand, the faster a query is being processed,

the less energy is consumed [1]. For example, if a query

can be answered using an index lookup instead of a table

scan, fewer cycles are spent on that particular query. On

the other hand, energy can be saved, if individual hardware

components are turned off to save idle power and increase

the utilization of running components. As a consequence, the

individual response time of a query may suffer from improved

energy efficiency. In this case, the system has to flexibly

balance query response time minimization and throughput

maximization under a given energy constraint on a case-by-

case basis. In opposition to elasticity in the large, this property

can be considered elasticity in the small.

In our research, we focus on the second direction of

elasticity in the small by enhancing a single system by more

and more components or cores, whereas we utilize low-

energy processors. The extremely low-energy design offers

us the possibility to place hundreds to millions of chips on a

single board without any thermal restrictions. Fundamentally,

general purpose processors are reaching their limits since

single-threaded performance has almost stopped to increase,

because the maximum core frequency is limited by physical

constraints. Even the current solution, to put more and more

homogeneous cores onto a single socket, will also reach

physical limitations soon. As the feature size in which proces-

sors are manufactured will shrink, the number of transistors

will increase, enlarging the occurrence of dark silicon [2]:

Since not all transistors can be supplied with power at the

same time, some fraction of the chip space can be used

for additional specialized instruction sets to be power-gated

whenever needed without compromising the overall general

purpose characteristics of the chip itself. Thus, specialized

circuits in form of instruction set extensions or heterogeneous

cores are more helpful in terms of performance than placing

more homogeneous cores on the chip.

In previous papers, we considered the aspect of hetero-

geneous cores by presenting specialized processor designs

to efficiently support database system primitives. We tackled

the challenge to optimize set-oriented database operations

[3] and introduced specialized instruction set extensions for

database hashing primitives [4]. Both design approaches are

based on low-energy processors as described in our vision.

In both papers, we clearly demonstrated the benefits of these

specialized instruction set extensions in terms of performance

as well as energy consumption compared to general purpose

processors. In our ongoing research, we are going to develop

further extensions for other database primitives. This research

direction enables us to build a low-energy chip consisting

of heterogeneous low-energy cores specialized for database

systems.

Our Contribution and Outline

Aside from the development of specialized instruction set

extensions for the database system, we also have to tackle

the challenge of query processing on a low-energy many-core

processor. In this paper, we are going into a more system-

oriented level and describe our approach to execute database

queries on such a processor design. In detail, our contributions

are as follows:

• At first, we introduce our underlying hardware archi-

tecture, the Tomahawk platform, which is developed at

our university (Section II). Unfortunately, the current

available prototype (Tomahawk 2 - T2) does not include

any database-specific extension, which is pursued for the

next release in 2015.

• Generally, the low-energy architecture design offers some

benefits for query processing. However, the processing of

large data sets is the most challenging part. In particular,

the data transfer between the different cores is a major

challenge, which is explained in Section III.

• Based on these challenges, we investigate and evaluate

the current task execution concept of the Tomahawk

platform for query processing in a database system. As

we are going to show, the current available task concept

is not sufficient for query processing.

• Based on the previous investigation, we describe and

evaluate our alternative concept in Section V. This

concept is implemented using an operating system for

heterogeneous manycores.

• We conclude the paper with a description of our ongoing

work in Section VI, a presentation of related work in

Section VII and a brief summary in Section VIII.

II. TOMAHAWK ARCHITECTURE

The hardware foundation of our hardware/software co-

design is the Tomahawk platform [5]. This platform is a

heterogeneous multiprocessor system-on-a-chip (MPSoC) and

has been developed at our university, whereas the primary fo-

cus was on mobile communication applications. Nevertheless,

the platform aims to be able to adapt for highly specialized

tasks while being very energy efficient.

Generally, the Tomahawk platform consists of two subsys-

tems called control-plane and data-plane [5]. The control-

plane subsystem comprises a CPU, a global memory and

peripherals, whereas this CPU is also called application core

(App). The App-Core is responsible to execute the application

control-flow. The data-plane subsystem consists of a number

of processing elements (PEs), each equipped with a local

program and data memory. PEs are not able to access the

global memory directly, instead a data locality approach is

exploited using scratch-pad local memory. That means, the

PEs are explicitly isolated from the control-plane subsystem.

The main purpose of this subsystem is to execute the pure data

flow processing (accelerator approach for data processing).

Therefore, this subsystem can be seen as slave unit in the

PE

R

R R

R

RISC

SPM DMA

PE
RISC

SPM DMA

PE
RISC

SPM DMA

PE
RISC

SPM DMA

PE
RISC

SPM DMA

PE
RISC

SPM DMA

PE
RISC

SPM DMA

PE
RISC

SPM DMA

RISC

I-$

App CM
RISC

SPM DMAD-$

DRAM

FPGA-

Interface

Figure 1: Simplified structure of the Tomahawk 2 chip.

overall system architecture. Both subsystem are decoupled

logically and linked through a controller called CoreManager

(CM). The CM is responsible for the task scheduling of the

PEs, the PE allocation and the data transfer management

from global memory to the PEs. Moreover, the CM performs

frequency scaling of the PE cores in order to minimize the

power consumption.

In particular, figure 1 shows a conceptual representation

of the Tomahawk2 (T2) [6] including the elements of the

control-plane and the data-plane. All modules are integrated

onto the same die and are connected by a network-on-chip

(NoC). Externally, there are two DRAM modules of 128MB

each that are connected to the chip. The application core

consists of a 570T core from Tensilica (now Cadence), and a

16 KB cache for code and data, each. In contrast to that, a PE

also contains an Xtensa-LX4 core, but only 32KB scratchpad

memory (SPM) for code and 32KB for data, i. e. no cache. The

PEs can be clocked between 83 and 666 MHz. Additionally, it

has a DMA unit that was originally intended for sending debug

messages. However, it is general enough to allow arbitrary data

transfers between all modules, which is utilized by M3 (see

V). The CM contains a 32KB large scratchpad memory for

code and 64KB scratchpad memory for data.

III. QUERY PROCESSING CHALLENGES AND

OPPORTUNITIES

As described and shown in [5], the architecture is well-

suited for mobile communications applications with strin-

gent performance and energy-efficiency requirements, whereas

each application consists of a control-flow description (e.g.

using finite state machines) and a data-flow description (e.g.

directed acyclic graph). In this case, each part is executed on

the corresponding T2 subsystem orchestrated by the CoreM-

anager.

From a conceputal perspective, query processing in database

systems is similar to mobile communications applications,

since each query is usually expressed as a directed acyclic

graph. Therefore, the T2 concept should be benefical for that

kind of application. Furthermore, the papers [3], [4] presented

instruction set extensions for the PEs and demonstrated a

comparable performance behaviour to general purpose pro-

cessors with a very low energy consumption. Therefore, we

investigated the whole T2 concept for query processing.

In contrast to mobile communication applications, the data

aspect in database systems is more challenging. Fundamen-

tally, the processing elements (PEs) are the main elements

which are responsible for any computation. However, the

PEs are hardware elements which are isolated by definition

since they cannot interact. Each PE disposes of its own

local scratchpad memory. That means, the PEs do not have

direct access to the DRAM, but only to their own scratchpad

memory. On the one hand, this prevents overhead due to the

absence of a generic cache coherence protocol. On the other

hand, this decreases the programmability, because the data

flow needs to be handled explicitly and the directly accessible

address space for the code running on a PE is only 32KB for

code and 32KB for data. The size of the scratchpad memory

will increase in future, but the aspect of isolated PEs will be

kept. The challenge for query processing in database systems

is that each PE is able to process only a limited size of data

(e.g., 32KB) at once, which means that a fine-grained data

partitioning is required and a lot of input and output transfers

are issued. This raises the question, how the dataflow can be

organized and managed efficiently. The concrete answer to

this can vary for different use cases. However, the importance

of this aspect grows, considering that the number of PEs is

expected to increase significantly in the future, as the size of

the data managed by database systems still increases.

The fine-grained partitioning and the high input and output

transfer rate are challenging, but there exist some interesting

and positive side effects for database systems. Based on the

required fine-grained partitioning for query processing, each

operator works per-se in intra-operator parallelism mode based

on a task-level parallelism. In this way, the processing time for

each operator task on fine-grained data partitions is reduced,

so that we have to cope only with short running tasks. Using

that short running task property, an elastic query processing

can be established (elasticity in the small as mentioned in the

introduction). That means, intra-operator, inter-operator and

inter-query parallelism can be varied at any point in time,

since we only have short-running tasks and a high flexibility

by the assignment of tasks to PEs. The high flexibility results

from the aspect, that we have to explicitly assign functions

and fine-grained data partitions to the PEs in any case.

IV. QUERY PROCESSING ON TOMAHAWK

To establish a query processing for a database system on

the T2 system, we have to do two things: (1) implementation

of query operators and (2) constructing queries as data flow

graphs. Furthermore, we have to consider the requirement of

the fine-grained data partitioning as described in the previous

section.

A. TaskC Programming Interface

Aside from the hardware concept, the paper [5] also in-

troduces an appropriate programming interface called TaskC

for short running tasks. TaskC is an extension for the C

programming language allowing developers to code atomic

tasks with input and output data, which are executable in

parallel on the isolated PEs, whereas input and output data are

of fixed lengths. An example is depicted in Listing 1. In this

example, a function task doSomething is defined that should

be executed on a PE, taking an input array and an output

array as arguments. The function body reads from the input

array and fills thereby the output array. All task arguments

must be pointers to arrays with an even length. Results are

always written to one of these arrays. A direct transfer to

the DRAM is not provided. Generally, the TaskC-concept is

similar to CUDA kernels or OpenCL kernels. Therefore, the

implementation of query operators is straightforward. Then,

a database query is a data flow graph represented as host

program and within this program, several tasks can be called,

whereas we have to explicitly specify the parallelism by

defining the number of tasks for each operator based on the

data size. The size of input and output arrays must be stated.

In the following example these sizes are constant but this is

not necessary.

Listing 1: TaskC example code

vo id t a sk doSom eth in g (i n t ∗ in , i n t ∗ o u t) {
f o r (i n t i = 0 ; i < 1 6 ; i ++)

o u t [i] = i n [i ∗ 2] ∗ i n [i ∗ 2 + 1] ;
}
i n t main () {

t a s k (task doSom eth ing ,
IN (i n a r r , 32 ∗ 4) , OUT(o u t a r r , 16 ∗ 4)) ;

t a s k S y n c () ;
}

B. Query Execution

To execute a query, the corresponding host program has

to be loaded on the App-Core. Within this program, tasks

can be called being executed on PEs. By specifying the input

and output data for a task, the developer explicitly defines

the dependencies of the tasks (data-flow approach). These

dependencies are used by the CoreManager of the T2 system

to schedule the tasks in the appropriate order on arbitrary PEs.

For example, task A could use the output data of task B as the

input data and would thereby create a dependency of task A

on task B. Furthermore, the CoreManager also provides infor-

mation about the data locality and delegates the data transfer

which is then initiated by a control unit on the corresponding

PE. All tasks are usually started asynchronously, therefore, an

application can call taskSync, to synchronize the submitted

tasks and wait for their completion.

C. Evaluation

To evaluate the performance of queries using TaskC, we

implemented three applications executing common operators

and measured their runtime behavior while changing the data

size. All applications employ a single task function that

executes the corresponding operator over a part of the data

(fine-grained data partitioning). The first application performs

a parallelized recursive bitonic sort, while the second performs

an additional aggregation count. The third one does only

perform the aggregation count. Figure 2a shows the results

for the three applications. As expected, the aggregation is

significantly faster than the sort and grows roughly linearly.

An important question for data-intensive applications is

how expensive data transfers are. Therefore, we evaluated

the amount of time spent with data transfers compared to

the time spent with the actual computation. Figure 2b shows

the runtime of a selection with three predicates. Every task

executes the whole selection including all predicates. The

upper curve shows the complete time, while the intermediate

curve excludes the transfer back to the DRAM. The time for

the transfer back to the application core is illustrated by the

lower curve. As we can see, the transfer time grows more than

linearly when increasing the data size on the T2.

To further analyze the transfer time for this test case, we

varied the number of the used PEs. Figure 2c shows the

percentage of the time which is spent only for the result

transfer. When using only a single PE it stays on a relatively

constant level. However, it starts growing along with the data

size when all PEs are used and finally levels out at a range

between 17 and 20%.

D. Conclusion

Unfortunately, a query processing implementation with

TaskC and execution using the proposed CoreManager suffers

from the limitation that the resulting set of data has to be

estimated before the task is executed producing unnecessarily

large return arrays. In typical database systems, these are

only known at runtime, when processing the input data.

Furthermore, the whole output array is always sent back to the

DRAM, regardless of the number of results that have actually

been written. This leads to many expensive transfers which is

especially bothering because typically, the resulting dataset is

rather small, compared to the input dataset, e. g. for the reduce

part of a Map Reduce.

There are further restrictions regarding the different kinds

of parallelism in database systems. While intra-operator and

intra-query parallelism follow directly from the task concept,

inter-operator/query parallelism is not acquirable. For instance,

assume an operation depending on the results of two preceding

operations, e.g. joining the outcome of two different select

operations. The select operations would have to be started

one after another and the join could only begin after all

preceding tasks have been finished. Starting the different select

operations at the same time on different assigned PEs or

beginning the join before all preceding operations is part

of the data locality optimization which is done by the Core

Manager. The user can only influence this behaviour indirectly

by adapting the working set. Additionally the Core Manager

always saves a copy of the data to the main memory for failure

reaction reasons.

V. SOFTWARE-CONTROLLED QUERY PROCESSING ON

TOMAHAWK

To overcome the previously described manual adaption of

the working set for query processing, we have evaluated a

microkernel-based operating system approach on the T2.

A. Mircokernel Approach on Tomahawk

Our operation system group is developing an operating

system (OS) called M3 for heterogeneous manycore systems.

Since the traditional approach of running a shared OS kernel

on all cores will not work for heterogeneous cores, where

some cores might not even have OS support, the concept

of M3 is to run a microkernel on a dedicated core and

remote-control the other cores. That is, both the microkernel

and the applications run alone on their cores, whereas the

0

5·104

5·104

10·104

10·104

15·104

15·104

20·104

20·104

25·104

25·104

1

2

3

4

5

Aggregation count

Bitonic sort and aggregation count

Bitonic Sort

0.04

0.06

0.08

records

records
Closeup of aggregation count:

0.02

ex
ec

u
ti

o
n

ti
m

e[
s]

ex
ec

u
ti

o
n

ti
m

e[
s]

(a) TaskC runtime including data transfers from and to the PEs

0 5·104 10·104 15·104 20·104 25·104

10

20

30

ex
ec

u
ti

o
n

ti
m

e[
m

s]

records

5

15

25

Result data transfer

Select w/o result data transfer

Select including result data transfer

(b) Select with 3 predicates, TaskC runtime

10

20

records

tr
an

sf
er

ti
m

e[
%

]

5

15

8 PEs

1 PE

104 105 106

(c) Percentage of execution time needed for result data transfer

Figure 2: Runtimes using TaskC. Each record contains two

32-bit integer values

applications get linked against a library that provides them

with abstractions for application creation, communication, and

memory management.

In contrast to TaskC, where tasks are isolated by definition

because they cannot communicate with other PEs or the

DRAM, a central point of M3 is to increase the flexibility

for applications by allowing them to communicate. However,

allowing communication requires isolation, i.e. M3 needs

to ensure that applications cannot influence or even destroy

each other, because otherwise the system cannot be used by

multiple applications at the same time. Since the microkernel

is running on a dedicated core, it is not involved in a commu-

nication between applications, but data is directly exchanged

between the cores the applications run on. For that reason, M3

builds upon a small hardware component for each core, that

allows to establish communication channels between cores or

between a core and a memory. This hardware component

can be used by the application, but its configuration, i.e.

where data can be sent to, for example, is not accessible by

the application, but only by the microkernel. Thereby, the

communication capabilities of applications are in complete

control of the microkernel (software-controlled processing).

M3 runs on multiple platforms. One of the supported plat-

forms is Linux, which is used as a virtual machine to simulate

the principle behavior of emerging hardware architectures

that do not provide shared memory and have a hardware

component that allows communication [7]. This can also be

utilized as a development platform that allows quick iterations

and has rich debugging support in contrast to T2, for example,

which proved as very helpful for this work. Another supported

platform is the T2. On the T2, a debug hardware component is

used by M3 allowing the access to the DMA unit, mentioned

earlier. It does not provide the isolation features yet because

it allows a PE to communicate with every other PE. However,

the concepts of M3 can still be applied, and the isolation is

emulated by software checks on T2.

M3 allows the developer to run full applications on the

PEs, instead of single functions. Over the microkernel, they

can establish communication channels by one application

registering itself as a service and other applications connecting

to that service and acting thereby as a client. Another feature

that M3 offers is the ability to allocate memory in DRAM and

share that with other applications.

B. Evaluation

In contrast to TaskC, the M3 kernel and library allows event

driven data transfer, i.e. data is only sent when necessary

and the receiver implements an event handler for processing

incoming messages. It may be expected that the application

can profit from the absence of unnecessary transfers and the

full control of the time data is left in the local memory.

In order to test this hypothesis, the scenario for M3 contains

the same functionality as the TaskC test case, i.e. it selects

records using three predicates. Figure 3 illustrates which

programs are loaded onto the PEs. Select 1 is called once for

every part of the dataset while Select 2 and Select 3 are only

called for those, which have passed the first select operator.

The first operator is expected to narrow the result set and

therefore reduce the workload for the succeeding process. Of

course, all predicates could be tested on the same PEs. This

would accelerate the execution even more. But the goal of this

specific comparison is to detect differences in the data transfer

time.

Fig. 4 shows the overall runtime of the process for different

selectivities and the runtime for TaskC using 4 PEs for com-

parison. There is no differentiation between the selectivities

for TaskC, because it does not change due to the static result

array size. For smaller selectivities, the M3-based approach

is the more efficient one. Although it only uses two PEs

at once per operator while TaskC uses four of them and

the application core to host the control program. For larger

selectivities, the benefit of the M3-based approach shrinks

because more data needs to be transferred to Select 2 & 3

and more computation on these PEs is required. However,

due to the overhead of dynamic data dependency checking in

the TaskC approach, the M3-based approach is still slightly

M3 Kernel

Select 1 Select 1

Select 2 & 3 Select 2 & 3

unallocated

(server) (server)

unallocated

unallocated
(client) (client)

Client/Server↔Kernel

Client↔Server

Figure 3: Configuration of the eight processing elements

∆
t[

s]
records

2 · 106 4 · 106 6 · 106 8 · 106 10 · 106

TaskC:

M3 selectivities:

with result transfer
w/o result transfer

100%

0.1

0.2

0.3

0.4

10%

1%

Figure 4: Runtime comparison between TaskC and M3. TaskC

runtimes are not differentiated by selectivity since the amount

of transferred data is always the same.

faster with 100% selectivity. By comparing the results of M3

with 1% selectivity and the TaskC approach without result

transfers, it can also be seen that the missing opportunity to

specify the actual size of the results decreases the performance

significantly, but still does not reach the performance level of

M3.

Because of the large differences of the approaches, the

comparison is difficult though. For example, in the TaskC

version all three operators are applied by one task, instead

of applying two separate applications, as with M3. This leads

to duplicate work. Moreover, M3 needs to emulate missing

hardware functionality, which adds some overhead that is

more severe the more transfers are done, i.e. the more data

is selected in the first step.

Attention should be paid to the fact that the programs

implementing the operators can be loaded on as many cores

as the developer wishes. Moreover, different programs can

be loaded. In addition to intra-operator/query parallelism this

allows inter-operator/query parallelism.

VI. LESSONS LEARNED

As shown, there are different approaches to implement

query processing functionalities on the T2 platform. On the

one hand, TaskC uses a concept of short running tasks with

the same functionality being automatically distributed over a

number of cores that is already widely used, e.g. in CUDA or

OpenCL. The most recognizable downside is the occasionally

large transfer overhead and the limitation, that only arrays

can be passed to a task. The full potential of TaskC is tapped

when executing many short running tasks which have no need

for communication between each other, e. g. in mobile com-

munication for which the Tomahawk was initially developed.

Database applications using TaskC would benefit from DRAM

access and a possibility to communicate directly between the

PEs to avoid the long route via the DRAM. Additionally,

specific database functionality, e.g. query partitioning, could

be a part of the CoreManager.

On the other hand, the software-controlled approach M3

allows the developer to define separate queries or operators

for the PEs and perform data transfers between them. This

reduces unnecessary data transfers to a minimum and provides

the developer with a much higher degree of freedom in choices

concerning parallel implementations. Nevertheless, queries

using M3 have a more expensive setup time compared to

starting a task on a PE when using TaskC, because they need

to establish communication capabilities over the kernel first.

That means, for short running programs (e.g. a few thousand

cycles), TaskC is the more suitable approach.

On the hardware side, query processing would not only

benefit from specific instructions, like already done [4], but

also by a ring buffer for the DMA unit, which is planned for

a later release of the Tomahawk. The ring buffer would allow

data streaming and could thereby further speed up data inten-

sive applications. Enforcing isolation in the DMA unit would

relieve M3 from emulating the security checks in software and

thus decrease the overhead for communication, which is also

planned for a later release of the Tomahawk. Moreover, larger

scratchpad memories would increase the amount of data that

can be processed without requiring additional transfers, which

would increase the performance.

VII. RELATED WORK

In the last recent years, GPUs have been more and more

used as database co-processors [8]. GPUs consist of many

small cores, however, these cores cannot execute instructions

independently of each other, but rather run the same operations

highly parallel on different data. This introduces the burden

of adjusting the algorithm to this specific kind of parallelism.

On the T2, an algorithm can be implemented as Task or as

PE code for M3, where it is executed as a single threaded

program. Parallelism is added by executing many independent

program parts at the same time.

More comparable to the T2 platform are the IBM Cell

processor and the Intel Xeon Phi. The first has been evaluated

as a database processor [9], [10]. It consists of eight small

cores and one larger PowerPC core, which has a configuration

very similar to the T2. Intels Xeon Phi has up to 61 small

x86 cores, which have been used for database algorithms [11]

including Map Reduce [12]. In contrast, the T2 additionally

contains a core manager, which can be used for fast task

processing, including dependency checks and task distribution.

Using TaskC together with M3 allows two programming

methods that can coexist, which is not given by the Cell

architecture or the Xeon Phi. Also, the T2 is optimized for

ultra low energy consumption far below x86 or Cell cores.

VIII. CONCLUSION AND OUTLOOK

We elaborated the challenges posed by a low-energy multi-

core architecture and investigated two different approaches for

overcoming them. Basically they implement a static and a

dynamic method for applying data flow graphs. The first one,

implemented using TaskC, supports fault tolerance and depen-

dency checking. While these features are very welcome, they

also produce unwanted overhead and restrict the developer.

The latter, implemented using M3, lacks these features but also

the overhead. Additionally it provides the developer with more

freedom. Consequentially we suggested extensions which are

useful in terms of data processing. Hereafter, implementing

them is a meaningful part of our work.

Due to the ongoing development of the Tomahawk, there

will be new hardware releases featuring a wider palette of

different cores, requiring further tests with the aid of the

newly added or improved modules. This will show which

strategies are optimal for different kinds of scenarios, clearing

the way not only for more complex operations but also for

implementing appropriate database libraries and frameworks,

e. g. a Map Reduce.

IX. ACKNOWLEDGMENTS

This work is partly funded by the German Research Foun-

dation (DFG) within the Cluster of Excellence “Center for

Advancing Electronics Dresden” and by the European Union

together with the Free State of Saxony through the ESF young

researcher group “IMData” 100098198.

REFERENCES

[1] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the
energy efficiency of a database server,” in SIGMOD Conference, 2010,
pp. 231–242.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011.

[3] O. Arnold, S. Haas, G. Fettweis, B. Schlegel, T. Kissinger, and
W. Lehner, “An application-specific instructions set for accelerating set-
oriented database primitives,” in SIGMOD, 2014.

[4] O. Arnold, S. Haas, G. Fettweis, B. Schlegel, T. Kissinger, T. Karnagel,
and W. Lehner, “Hashi: An application specific instruction set extension
for hashing.” in ADMS@VLDB, 2014, pp. 25–33.

[5] O. Arnold, E. Matus, B. Noethen, M. Winter, T. Limberg, and G. Fet-
tweis, “Tomahawk: Parallelism and heterogeneity in communications
signal processing mpsocs,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 13, no. 3s, p. 107, 2014.
[6] B. Noethen, O. Arnold, E. Perez Adeva, T. Seifert, E. Fischer, S. Kunze,

E. Matus, G. Fettweis, H. Eisenreich, G. Ellguth, S. Hartmann, S. Hopp-
ner, S. Schiefer, J.-U. Schlusler, S. Scholze, D. Walter, and R. Schuffny,
“10.7 a 105gops 36mm2 heterogeneous sdr mpsoc with energy-aware
dynamic scheduling and iterative detection-decoding for 4g in 65nm
cmos,” in Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2014 IEEE International, Feb 2014, pp. 188–189.
[7] N. Asmussen, H. Härtig, and M. Völp, “Turning x86 into a hardware

simulator for future manycores,” in Proceedings of the 3rd Workshop

on Systems for Future Multicore Architectures, Apr. 2013.
[8] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.

Sander, “Relational query coprocessing on graphics processors,” ACM

Trans. Database Syst., vol. 34, no. 4, pp. 21:1–21:39, Dec. 2009.
[9] M. de Kruijf and K. Sankaralingam, “Mapreduce for the cell broadband

engine architecture,” IBM J. Res. Dev., vol. 53, no. 5, pp. 747–758, Sep.
2009.

[10] B. Gedik, R. R. Bordawekar, and P. S. Yu, “Celljoin: A parallel stream
join operator for the cell processor,” The VLDB Journal, vol. 18, no. 2,
pp. 501–519, Apr. 2009.

[11] B. Schlegel, T. Karnagel, T. Kiefer, and W. Lehner, “Scalable frequent
itemset mining on many-core processors,” in Proceedings of the Ninth

International Workshop on Data Management on New Hardware, ser.
DaMoN ’13. New York, NY, USA: ACM, 2013, pp. 3:1–3:8.

[12] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang, B. He, R. S. M. Goh,
and R. Huynh, “Optimizing the mapreduce framework on intel xeon phi
coprocessor.” in BigData Conference, X. Hu, T. Y. Lin, V. Raghavan,
B. W. Wah, R. A. Baeza-Yates, G. Fox, C. Shahabi, M. Smith, Q. Y.
0001, R. Ghani, W. Fan, R. Lempel, and R. Nambiar, Eds. IEEE, 2013,
pp. 125–130.

